精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.

求证:(1)AD=BD;

(2)DF是⊙O的切线.

 

 

 

【答案】

(1)证法一:连结CD,     

 

∵BC为⊙O的直径

       ∴CD⊥AB                              

    ∵AC=BC

    ∴AD=BD.              

证法二:连结CD,    

 ∵BC为⊙O的直径

∴∠ADC=∠BDC=90°

∵AC=BC,CD=CD

∴△ACD≌△BCD      

∴AD=BD                       

(2)证法一:连结OD,      

 

 ∵AD=BD,OB=OC

  ∴OD∥AC               

  ∵DE⊥AC 

    ∴DF⊥OD                       

  ∴DF是⊙O的切线.    

证法二:连结OD,  

    ∵OB=OD

    ∴∠BDO=∠B            

    ∵∠B=∠A

    ∴∠BDO=∠A       

    ∵∠A+∠ADE=90°

    ∴∠BDO+∠ADE=90°

    ∴∠ODF=90°           

    ∴DF是⊙O的切线.   

【解析】(1)由于AC=AB,如果连接CD,那么只要证明出CD⊥AB,根据等腰三角形三线合一的特点,我们就可以得出AD=BD,由于BC是圆的直径,那么CD⊥AB,由此可证得.

(2)连接OD,再证明OD⊥DE即可.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案