精英家教网 > 初中数学 > 题目详情
(2002•甘肃)直线l与直线y=2x+1的交点的横坐标为2,与直线y=-x+2的交点的纵坐标为1,求直线l对应的函数解析式.
【答案】分析:设直线l与直线y=2x+1的交点坐标为A,与直线y=-x+2的交点为B,把x=2代入y=2x+1,可求出A点坐标为(2,5);B点坐标为(1,1),设直线l的解析式为y=kx+b,把A,B两点坐标代入即可求出函数的关系式.
解答:解:设直线l与直线y=2x+1的交点坐标为A(x1,y1),与直线y=-x+2的交点为B(x2,y2),
∵x1=2,代入y=2x+1,
得y1=5,
即A点坐标为(2,5),
∵y2=1,
代入y=-x+2,
得x2=1,
即B点坐标为(1,1),
设直线l的解析式为y=kx+b,把A,B两点坐标代入,
得:
解得:
故直线l对应的函数解析式为y=4x-3.
点评:本题考查的是用待定系数法求一次函数的解析式,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2002•甘肃)(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2002•甘肃)(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

查看答案和解析>>

科目:初中数学 来源:2002年甘肃省中考数学试卷(解析版) 题型:解答题

(2002•甘肃)(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

查看答案和解析>>

科目:初中数学 来源:2002年甘肃省中考数学试卷(解析版) 题型:解答题

(2002•甘肃)直线l与直线y=2x+1的交点的横坐标为2,与直线y=-x+2的交点的纵坐标为1,求直线l对应的函数解析式.

查看答案和解析>>

同步练习册答案