精英家教网 > 初中数学 > 题目详情
6.如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α
(0°<α<90°).若∠1=115°,则a=25°.

分析 根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=115°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.

解答 解:如图,
∵四边形ABCD为矩形,
∴∠B=∠D=∠BAD=90°,
∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,
∴∠D′=∠D=90°,∠4=α,
∵∠1=∠2=115°,
∴∠3=360°-90°-90°-115°=65°,
∴∠4=90°-65°=25°,
∴∠α=25°.
故答案为:25°.

点评 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.如果只用一种正多边形做平面密铺,而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的每个内角度数为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,给出如下的判断:
①四边形ABCD为平行四边形;
②BD的长度增大;
③四边形ABCD的面积不变;
④四边形ABCD的周长不变.
其中正确的序号是①②④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,△ABC和△AMN均为等边三角形,将△AMN绕点A旋转(△AMN在直线AC的右侧).
(1)求证:△BAM≌△CAN;
(2)若点C,M,N在同一条直线上,
①求∠BMC的度数;
③点M是CN的中点,求证:BM⊥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面的文字,解答问题.大家都知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能写出来,于是小明用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分.
事实上,小明的表示方法是有道理的,因为$\sqrt{2}$的整数部分是1,用这个数减去其整数部分,差就是小数部分,所以$\sqrt{2}$-1是$\sqrt{2}$的小数部分.
请解答:
(1)你能求出$\sqrt{5}$+2的整数部分a和小数部分b吗?并求ab的值;
(2)已知10+$\sqrt{3}$=x+y,其中x是整数,且0<y<1,请求出x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,一次函数y=kx+b的图象与反比例函数y=-$\frac{8}{x}$的图象交于A、B两点,A的横坐标和点B的纵坐标都是-2.求:
(1)一次函数的表达式;
(2)△AOB的面积;
(3)根据图象,当x在什么范围内时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在⊙O中,弦AB=CD,且相交于点E,连接OE.
(1)如图1,求证:EO平分∠BEC;
(2)如图2,点F在半径OD的延长线上,连接AC、AF,当四边形ACDF是平行四边形时,求证:OE=DE;
(3)如图3,在(2)的条件下,AF切⊙O于点A,点H为弧BC上一点,连接AH、BH、DH,若BH=$\frac{2}{3}$AH,AB=$\sqrt{21}$,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知等腰三角形的两条边分别是3,6,则第三边的长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.关于x的方程3x+2a=4-x的解是x=-2,则a的值是6.

查看答案和解析>>

同步练习册答案