精英家教网 > 初中数学 > 题目详情
已知二次函数y=
12
x2+bx+c的图象经过点A(c,-2),精英家教网
求证:这个二次函数图象的对称轴是x=3.题目中的矩形方框部分是一段被墨水污染了无法辨认的字.
(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程;若不能,请说明理由;
(2)请你根据已有的信息,在原题中的矩形方框中,添加一个适当的条件,把原题补充完整.
分析:(1)根据对称轴坐标公式,可以求出b,然后把A(c,-2)代入可以求得c,从而得到二次函数解析式;
(2)已知题中有两个未知数,再添加一个条件能构成二元一次方程组即可.
解答:解:(1)能.
由结论中的对称轴x=3,
-
b
2×(
1
2
)
=3
,则b=-3,
又因图象经过点A(C,2),
则:
1
2
c2-3c+c=-2
c2-4c+4=0(c-2)2=0,
∴c1=c2=2,
∴c=2.
∴二次函数解析式为y=
1
2
x2-3x+2;

(2)补:点B(0,2).(答案不唯一)
以下其中的一种情况(均可得分)
①过抛物线的任意一点的坐标,
②顶点坐标为(3,-
5
2
),
③当x轴的交点坐标(3+
5
,0)或(3-
5
,0),
④当y轴的交点坐标为(0,2),
⑤b=-3或c=2.
点评:此题结合实际考查了二次函数解析式的求法,为一道条件开放性题目,需要掌握二次函数的性质才能解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较精英家教网锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一精英家教网种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
y=x2+px+q  x1 x2 
y=x2-5x+6  -5  6  1  1
y=x2-
1
2
-
1
2
 
   
1
4
   
1
2
 
y=x2+x-2    -2   -2    3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-
1
2
(x-
3
2
)2+
25
8
的图象在坐标原点为O的直角坐标系中,
(1)设这个二次函数的图象与x轴的交点是A、B(B在点A右边),与y轴的交点是C,求A、B、C的坐标;
(2)求证:△OAC∽△OCB.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=-
12
.下列结论中:
①abc>0;②a+b=0;③2b+c>0;④4a+c<2b.
正确的有
(只要求填写正确命题的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2的图象经过点A(
1
2
1
8
)、B(3,m).
(1)求a与m的值;    
(2)当-2<x<4时,函数值y的取值范围.
(3)写出将其图象向下平移4个单位、再向左平移2个单位后的解析式.

查看答案和解析>>

同步练习册答案