精英家教网 > 初中数学 > 题目详情
16.阅读下列材料:
1×2=$\frac{1}{3}$(1×2×3-0×1×2)
2×3=$\frac{1}{3}$(2×3×4-1×2×3)
3×4=$\frac{1}{3}$(3×4×5-2×3×4)
以上三个等式相加可得:
1×2+2×3+3×4=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)=$\frac{1}{3}$(1×2×3-0×1×2+2×3×4-1×2×3×4×5-2×3×4)=$\frac{1}{3}$(3×4×5-0×1×2)=20
(1)计算:1×2+2×3+3×4+…+9×10+10×11(写出过程);
(2)1×2+2×3+3×4+…+n×(n+1)=$\frac{1}{3}$n(n+1)(n+2);(直接写出过程)
(3)根据上述方法,计算1×2×3+2×3×4+3×4×5+…+7×8×9.

分析 (1)利用已知材料得出原式=$\frac{1}{3}$×10×11×12,进而求出即可;
(2)利用(1)中所求,进而求出即可;
(3)仿照已知得出原式=$\frac{1}{4}$(1×2×3×4)+$\frac{1}{4}$(2×3×4×5-1×2×3×4)+$\frac{1}{4}$(3×4×5×6-2×3×4×5)+…+$\frac{1}{4}$(9×10×11×12-8×9×10×11)进而求出即可.

解答 解:(1)1×2+2×3+3×4+…+10×11
=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)+…+$\frac{1}{3}$(10×11×12-9×10×11)
=$\frac{1}{3}$(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+10×11×12-9×10×11)
=$\frac{1}{3}$×10×11×12
=440;

(2)1×2+2×3+3×4+…+n(n+1)
=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)+…+$\frac{1}{3}$[n×(n+1)×(n+2)-(n-1)×n×(n+1)]
=$\frac{1}{3}$n(n+1)(n+2);

(3)1×2×3+2×3×4+3×4×5+…+7×8×9
=$\frac{1}{4}$(1×2×3×4)+$\frac{1}{4}$(2×3×4×5-1×2×3×4)+$\frac{1}{4}$(3×4×5×6-2×3×4×5)+…+$\frac{1}{4}$(8×9×10×11-7×8×9×10)
=$\frac{1}{4}$×8×9×10×11
=1980.

点评 此题考查数字的变化规律,找出数字之间的运算规律,利用找出的规律解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.观察下列单项式.x,-2x2,3x3,-4x4,….根据你发现的规律,写出第8个式子是-8x8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在数轴上近似地表示下列各数,4,-1.5,0,$\sqrt{2}$,-π,$\sqrt{9}$,并用“<”连接:

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.劳技课上,老师请同学们在一张长9cm,宽8cm的长方形纸板上剪下一个腰长为5cm的等腰三角形(要求等腰三角形一个顶点与长方形一个顶点重合,其余两个顶点在长方形的边长),则该等腰三角形的面积为12.5(cm 2)或10(cm 2)或7.5(cm 2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.把多项式-x-1-3x3y2+2x2y3按x的降幂排列是-3x3y2+2x2y3-x-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.$-\frac{{{a^3}b+2π{a^3}{b^3}}}{3}$是六次二项式,最高次项的系数为$\frac{2π}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)(23$\frac{2}{3}$-29$\frac{7}{15}$+26.6-19$\frac{5}{9}$)×(-45);   
(2)-32+(-2$\frac{1}{2}$)2×(-$\frac{4}{25}$)+|-22|
(3)47$\frac{24}{25}$÷(-48)
(4)-52-[-4+(1-0.2×$\frac{1}{5}$)÷(-2)].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知a、b互为相反数,c、d互为倒数,m的绝对值为3,求$\frac{a+b}{5}$+m-cd的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:
(1)$\frac{\sqrt{3}}{\sqrt{5}}$       
(2)$\frac{\sqrt{8}}{\sqrt{2a}}$.

查看答案和解析>>

同步练习册答案