精英家教网 > 初中数学 > 题目详情

已知双曲线数学公式和直线y=kx+2(k是常数)相交于点A(x1,y1)和点B(x2,y2),(x1<x2)且数学公式
(1)求k值;
(2)在同一平面直角坐标系中画出两个函数图象,根据图象写出一次函数值大于反比例函数值时x的取值范围.

解:(1)联立两函数解析式得:
消去y得:=kx+2,即kx2+2x-3=0,
∴△=b2-4ac=4+12k>0,即k>-
∴x1+x2=-,x1x2=-
∴x12+x22=(x1+x22-2x1x2=+=10,
整理得:5k2-3k-2=0,即(5k+2)(k-1)=0,
解得:k=-(不合题意,舍去)或k=1,
则k的值为1;
(2)由k=1得到一次函数解析式为y=x+2,与反比例函数y=联立,
可得A(1,3),B(-3,1),
在同一个坐标系中画出两函数图象,如图所示,

由图象可得:一次函数值大于反比例函数值时x的取值范围为-3<x<0或x>1.
分析:(1)联立两函数解析式,消去y得到关于x的一元二次方程,由两函数有两个交点,得到根的判别式大于0,列出关于k的不等式,求出不等式的解集得到k的范围,利用根与系数的关系表示出两根之和与两根之积,将已知等式利用完全平方公式变形后,将两根之和与两根之积代入得到关于k的方程,求出方程的解即可得到k的值;
(2)由k的值确定出一次函数解析式,在同一个坐标系中画出两函数图象,求出两函数交点A与B的坐标,由A与B的横坐标及0,将x轴分为四个范围,在图象上找出一次函数图象在反比例函数图象上方时x的范围即可.
点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:根与系数的关系,完全平方公式的运用,一元二次方程的解法,以及坐标与图形性质,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知双曲线数学公式和直线y=2x-1相交于两点M(a,5)和点N.
(1)求:反比例函数的解析式;
(2)求:N点的坐标.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川广安卷)数学(带解析) 题型:解答题

如图,已知双曲线和直线y=mx+n交于点A和B,B点的坐标是(2,﹣3),AC垂直y轴于点C,AC=
(1)求双曲线和和直线的解析式.
(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《反比例函数》(03)(解析版) 题型:解答题

(2004•荆门)已知双曲线和直线y=kx+2相交于点A(x1,y1)和点B(x2,y2),且x12+x22=10,求k的值.

查看答案和解析>>

科目:初中数学 来源:2004年湖北省荆门市中考数学试卷(解析版) 题型:解答题

(2004•荆门)已知双曲线和直线y=kx+2相交于点A(x1,y1)和点B(x2,y2),且x12+x22=10,求k的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江西省南昌市九年级下学期第二次联考数学试卷(解析版) 题型:解答题

已知双曲线和直线AB的图象交于点A(-3,4),AC⊥x轴于点C.

1.求双曲线的解析式;

2.当直线AB绕着点A转动时,与x轴的交点为B(a,0),并与双曲线另一支还有一个交点的情形下,求△ABC的面积S与a之间的函数关系式.,并指出a的取值范围.

3.

 

查看答案和解析>>

同步练习册答案