精英家教网 > 初中数学 > 题目详情
如图,E是正方形ABCD内一点,将△CDE烧点D按顺时针方向旋转90°后得到△ADF.若DE=3,则EF的长是(  )
A.3
2
B.3
3
C.3D.不能确定

∵将△CDE烧点D按顺时针方向旋转90°后得到△ADF,
∴DF=DE=3,∠EDF=90°,
在Rt△EDF中,由勾股定理得:EF=
DE2+DF2
=3
2

答:EF的长是3
2

故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,将直角△ABC绕点C顺时针旋转90°至△A′B′C的位置,已知AB=10,BC=6,M是A′B′的中点,则AM=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图1是边长分别为4
3
和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,四边形ABCD的顶点坐标分别为A(-2,4),B(-4,2),C(-1,1),D(0,3),A′(2,0)为点A关于点P的中心对称点.
(1)写出对称中心P点坐标;
(2)画出四边形ABCD关于点P中心对称的四边形A′B′C′D′,B的对称点为B′,C的对称点为C′,D的对称点为D′;
(3)(2)中的线段A′B′也可以看作由线段BA平移得到,请说明线段BA平移的方式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转α角度得到的.若点A′在AB上,求旋转角α的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中放置着一个小旗ABCD,其四个顶点的坐标分别A(1,4),B(4,3),C(1,2),D(1,-1).
(1)画出将小旗绕点D逆时针旋转90°得到的图形A1B1C1D;
(2)画出图形A1B1C1D关于原点O成中心对称的图象A2B2C2D2
(3)点B2的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用两个全等的等边△ABC和△ACD拼成如图的菱形ABCD.现把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A重合,两边分别与AB、AC重合.将三角板绕点A逆时针方向旋转.
(1)当三角板的两边分别与菱形的两边BC、CD相交于点E、F时(图a),
①猜想BE与CF的数量关系是______;
②证明你猜想的结论.
(2)当三角板的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(图b),连接EF,判断△AEF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的
5
16
?若存在,求出此时x的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案