由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( )
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
科目:初中数学 来源: 题型:
如图,矩形ABCD中,以对角线BD为一边构成一个矩形BDEF,使得另一边EF过原矩形的顶点C
(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1 S2+S3(用“>”、“=”、“<”填空);
(2)写出如图中的三对相似三角形,并选择其中一对进行证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在?ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,(1)△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内用同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第一个内接正方形的边长是 ,第n个小正方形AnBnDnEn 的边长是 _________ .
(2)在△ABC中,BC=12,高AD=8,四边形PQMN为△ABC的内接矩形,(P在AB上,Q在AC上,M、N在BC上),
①求当PQ为何值时,矩形PQMN面积最大。
②若再在△APQ中作一个内接矩形P2Q2M2N2,如此下去,操作n次,求PnQn的长。(直接写出结果)
(3)解完上述两题,根据其中一题你还能归纳出怎样的数学结论,请简单的写出一条。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:
①FB⊥OC,OM=CM;
②△EOB≌△CMB;
③四边形EBFD是菱形;
④MB:OE=3:2.
其中正确结论的个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在等腰梯形ABCD中,M、N分别为AD、BC的中点,E、F分别为BM、CM的中点。
(1)求证:△ABM≌△CDM;
(2)判断并证明四边形MENF是何种特殊的四边形;
当等腰梯形ABCD的高h与底边BC满足怎样的数量关系时,四边形MENF是正方形?(直接写出结论,不需要证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com