精英家教网 > 初中数学 > 题目详情
18.如图,在平面直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A1,A2,A3,A4,…,则A30的坐标是(  )
A.(4$\sqrt{2}$,-4$\sqrt{2}$)B.(-4$\sqrt{2}$,4$\sqrt{2}$)C.(-8$\sqrt{2}$,8$\sqrt{2}$)D.(30,30)

分析 根据30÷4=7…2,得出A30在直线y=-x上,在第二象限,且在第8个圆上,求出OA30=8,通过解直角三角形即可求出答案.

解答 解:∵30÷4=7…2,
∴A30在直线y=-x上,且在第二象限,
即射线OA30与x轴的夹角是45°,如图OA=8,∠AOB=45°,
∵在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,
∴OA30=8,
∵sin45°=$\frac{AB}{8}$,cos45°=$\frac{OB}{8}$,
∴AB=4$\sqrt{2}$,OB=4$\sqrt{2}$,
∵A30在第二象限
∴A30的横坐标是-8sin45°=-4$\sqrt{2}$,纵坐标是4$\sqrt{2}$,
即A30的坐标是(-4$\sqrt{2}$,4$\sqrt{2}$).
故选:B.

点评 本题考查了解直角三角形,一次函数等知识点的应用,解此题的关键是确定出A30的位置(如在直线y=-x上、在第二象限、在第8个圆上),此题是一道比较好的题目,主要培养学生分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.(1)一个两位数,其中a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),把十位、个位上的数字互换位置得到一个新两位数.则这两个两位数的和一定能被11整除,这两个两位数的差一定能被9整除.
(2)将一个正整数从个位到最高位的数字依次重新书写成一个新数,恰好与原数相同,我们把这样的正整数称为“对称数”,如:5,33,565,2552,12421分别是一位、两位、三位、四位、五位“对称数”.
①请你写出2个四位“对称数”,猜想任意一个四位“对称数”,能否被11整除,并用字母式子说明理由;
②已知一个能被11整除的三位“对称数”,设其个位上的数字为x(1≤x≤4),十位上的数字为y,求y与x的数量关系,并写出所有能被11整除的三位“对称数”.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列图形中,既是中心对称图形又是轴对称图形的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,D是Rt△ABC斜边上的一点,DE⊥AC,DF⊥BC,垂足分别为E,F,且DE=DF.若AD=3,DB=4,试求S△ADE+S△BDF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知sin46°=cosα,则α=44度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知甲数比乙数大10,且甲数的2倍和乙数的6倍相等,则甲、乙两个数的和为(  )
A.30B.25C.20D.15

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)$\frac{{{a^2}x}}{{b{y^2}}}$•$\frac{{a{y^2}}}{{{b^2}x}}$;                
(2)$\frac{x-2}{x+3}$•$\frac{{{x^2}-9}}{{{x^2}-4}}$;
(3)($\frac{-3ac}{2b}$)2÷(-9ac2);          
(4)$\frac{{{{({a-b})}^2}}}{ab}$-$\frac{{{a^2}-{b^2}}}{ab}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,在△ABC中,点D为边AC上一点,且∠DBC=∠BAC.
(1)求证:BC2=CD•AC;
(2)如图2,点E、G分别是BC,DC边上一点,连接AE交BD于点F,连接EG,且∠BDC+∠AEG=180°,
①若点E为BC中点,$\frac{EG}{EF}=\frac{1}{\sqrt{5}}$,求$\frac{AB}{BC}$的值;
②若$\frac{BE}{CE}=\frac{1}{n}$,$\frac{EG}{EF}=\frac{1}{k}$,求$\frac{AB}{BC}$的值(用含n,k的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知C点的坐标为(1,0),直线y=-x+3交于x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A,B,C三点.
(1)求抛物线解析式.
(2)若点D的坐标为(-1,0),在直线y=-x+3上有一点P使△ABO与△ADP相似,求出点P的坐标.
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案