【题目】已知是的平分线,点是射线上一点,点C、D分别在射线、上,连接PC、PD.
(1)发现问题
如图①,当,时,则PC与PD的数量关系是________.
(2)探究问题
如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当时,PC与PD在(1)中的数量关系还成立吗?说明理由.
【答案】(1)PC=PD;(2)PC=PD仍然成立.理由见解析.
【解析】
(1)根据角平分线的性质可得出PC=PD;
(2)过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质得PE=PF,然后根据同角的补角相等得出∠FCP=∠PDE,即可由AAS证明△CFP≌△DEP,从而得证.
解:(1)∵OM是∠AOB的平分线,PC⊥OA,PD⊥OB,
∴PC=PD,
故答案为:PC=PD;
(2)PC=PD仍然成立.理由如下:
过P分别作PE⊥OB于E,PF⊥OA于F,
∴∠CFP=∠DEP=90°,
∵OM是∠AOB的平分线,∴PE=PF.
∵∠OCP+∠ODP=180°,又∠ODP+∠PDE=180°,
∴∠OCP=∠PDE,即∠FCP=∠PDE,
在△CFP和△DEP中,
,
∴△CFP≌△DEP(AAS),
∴PC=PD.
科目:初中数学 来源: 题型:
【题目】重庆某著名景区依托天然河道新开发了一款乘船体验项目.小明乘船由甲地顺流而下到乙地,然后由乙地逆流而上到丙地,然后靠岸乘车离开景点.若水流速度为2km/小时,船在静水中的速度为8km/小时.在整个乘船过程中,轮船与甲地相距的路程S(千米)与轮船出发的时间t(小时)之间的关系如图所示,甲乙两地间的距离为_____千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,求直尺的宽度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.
(1)将△ABC向左平移4格,再向下平移1格,请在图中画出平移后的△A'B'C';
(2)利用网格线在图中画出△ABC的中线CD,高线AE;
(3)△A'B'C'的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】假设有足够多的黑白围棋子,摆成一个“中”字,下列图形中,第①个图形中有4 枚黑子和4枚白子,第②个图形中有6枚黑子和11枚白子,第③个图形中有8枚黑子和18枚白子,…,按此规律排列,则第⑧个图形中黑子和白子的枚数分别为( )
A.14和48
B.16和48
C.18和53
D.18和67
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】是的直角三角形,的中点分别是点点,动点从点出发,按箭头方向通过到;以的速度运动,设点从开始运动的距离为,的面积为试回答以下问题:
(1)点从出发到停止,写出与的函数关系式并写出的取值范围.
(2)求出点从出发后几秒时,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B分别在函数y=(k1>0)与函数y=(k2<0)的图象上,线段AB的中点M在x轴上,△AOB的面积为4,则k1﹣k2的值为( )
A.2B.4C.6D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已如两个全等的等腰△ABC、△DEF,其中∠ACB=∠DFE=90°,E为AB中点,△DEF可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在的直线)于M、N.
(1)如图1,当线段EF经过△ABC的顶点时,点N与点C重合,线段DE交AC于M,已知AC=BC=5,则MC= ;
(2)如果2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由;
(3)如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连MN,EC,则(2)中AM,MN,CN之间的等量关系还成立吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com