A. | 6 | B. | 8 | C. | 10 | D. | 12 |
分析 根据平行四边形的性质得到AD∥BC和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
∴$\frac{EF}{CF}$=$\frac{DE}{BC}$,$\frac{{S}_{△DEF}}{{S}_{△BCF}}$=($\frac{DE}{BC}$)2,
∵E是边AD的中点,
∴DE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,
∴$\frac{EF}{CE}$=$\frac{1}{2}$,
∴△DEF的面积=$\frac{1}{3}$S△DEC=3,
∴S△BCF=12;
故选D.
点评 本题考查的是平行四边形的性质、相似三角形的判定和性质;掌握三角形相似的判定定理和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{13}}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 70° | B. | 60° | C. | 55° | D. | 35° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 百分位 | B. | 个位 | C. | 千位 | D. | 十万位 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 21 | B. | 20 | C. | 19 | D. | 18 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com