精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
k
x
的图象经过点(4,
1
2
)
,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标.
分析:根据点(4,
1
2
)
,点B(2,m)都在反比例函数上可得到m的值.根据新函数是由平移得到的可得到新函数k的值,把点B的坐标代入即可求得新函数解析式,进而求得与x轴的交点坐标.
解答:解:由于反比例函数y=
k
x
的图象经过点(4,
1
2
)

1
2
=
k
4

解得k=2(1分),
故反比例函数为y=
2
x

又∵点B(2,m)在y=
2
x
的图象上,
m=
2
2
=1
.(2分)
∴B(2,1).
设由y=x+1的图象平移后得到的函数解析式为y=x+b,
由题意知y=x+b的图象经过点B(2,1),
则1=2+b.
解得b=-1.(3分)
故平移后的一次函数解析式为y=x-1.
令y=0,则0=x-1.
解得x=1.(4分)
故平移后的一次函数图象与x轴的交点坐标为(1,0).(5分)
点评:本题用到的知识点为:当k的值相等时,两直线可由平移得到.反比例函数图象上的点的横纵坐标的积相等.与x轴的交点的纵坐标为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案