精英家教网 > 初中数学 > 题目详情
11.某兴趣小组想测量位于一池塘两端的A、B之间的距离,组长小明带领小组成员沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到达点D处,测得∠BDF=60°,已知AB与EF之间的距离为60米,求A、B两点的距离.

分析 过点A作AG⊥EF于点G,过点B作BH⊥EF于点H,利用∠ACF=45°与∠BDF=60°即可求出CG与DH的长度,从而可求出AB的长度.

解答 解:过点A作AG⊥EF于点G,过点B作BH⊥EF于点H,
∵∠ACF=45°,
∴AG=CG=60,
∵∠BDF=60°,
∴tan60°=$\frac{BH}{DH}$,
∴DH=$20\sqrt{3}$,
∵CD=100,
∴DG=CD-CG=40,
∴GH=AB=DG+DH=40+20$\sqrt{3}$

点评 本题考查解直角三角形的应用,解题的关键是作出两条辅助线,本题属于中等题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.计算:
(1)2$\sqrt{12}$-6$\sqrt{\frac{1}{3}}$+3$\sqrt{48}$
(2)(2$\sqrt{3}$-3$\sqrt{2}$)2-($\sqrt{6}$-$\sqrt{5}$)($\sqrt{6}$+$\sqrt{5}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,AB∥CD,EF⊥AB于E,已知∠1=35°,则∠2=55°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin,且满足$\left\{\begin{array}{l}{{y}_{min}>0}\\{2{y}_{min}>{y}_{max}}\end{array}\right.$,则我们称函数y为“三角形函数”.
(1)若函数y=x+a为“三角形函数”,求a的取值范围;
(2)判断函数y=x2-$\frac{\sqrt{2}}{2}$x+1是否为“三角形函数”,并说明理由;
(3)已知函数y=x2-2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知?ABCD中,AD=8cm,AB=10cm,BD=12cm,点P从点A出发,以1cm/s的速度向点B运动,同时点Q从点C出发以相同的速度向点D运动,设运动时间为t.
(1)连接DP、BQ,求证:DP=BQ;
(2)填空:
①当t为1s时,四边形PBQD是矩形;
②当t为2s时,四边形PBQD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)a(2-a)+(a+1)(a-1);        
 (2)a3•a4•a+(a24+(-2a42
(3)999.8×1000.2 (用简便方法计算)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.菱形ABCD中,∠B=60°,AB=4,点E在BC上,CE=2$\sqrt{3}$,若点P是菱形上异于点E的另一点,CE=CP,则EP的长为6或2$\sqrt{6}$或2$\sqrt{3}$-$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.三个不等于零的有理数a,b,c满足(a+b)(b+c)(c+a)=0,则$\frac{(a+b+c)({a}^{3}+{b}^{3}+{c}^{3})({a}^{5}+{b}^{5}+{c}^{5})({a}^{7}+{b}^{7}+{c}^{7})({a}^{9}+{b}^{9}+{c}^{9})}{{a}^{25}+{b}^{25}+{c}^{25}}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在矩形ABCD中,AD>AB,AE是∠BAC的平分线交BC于点E,以AC上一点O为圆心作圆,使⊙O经过A,E两点,⊙O交AC于点F,
(1)求证:BC是⊙O的切线;
(2)若AB=3,∠BAC=60°,试求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案