精英家教网 > 初中数学 > 题目详情
如图,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜边OA2为直角边作直角三角形,使得∠A2OA3=30°,依次以前一个直角三角形的斜边为直角边一直作含30°角的直角三角形,则Rt△A2010OA2011的最小边长为( )

A.22009
B.22010
C.
D.
【答案】分析:根据含30度角的直角三角形中,30度角所对的直角边为斜边的一半,可分别求得A1A2、A2A3、A3A4等的值,观察可发现规律,根据规律解题即可.
解答:解:由已知可求得A1A2,=1,A2A3=,A3A4=
又Rt△A2010OA2011的最小边长为A2010A2011
观察可发现A2010A2011=
故选C.
点评:此题主要考查了含30度角的直角三角形的相关知识,属于基础题,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜边OA2为直角边作直角三角形,使得∠A2OA3=30°,依次以前一个直角三角形的斜边为直角边一直作含30°角的直角三角形,则Rt△A2010OA2011的最小边长为(  )
A、22009
B、22010
C、(
2
3
)2009
D、(
2
3
)2010

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•柳州一模)如图,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜边OA2为直角边作直角三角形,使得∠A2OA3=30°,依次以前一个直角三角形的斜边为直角边一直作含30°角的直角三角形,则Rt△A2011OA2012的最小边长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜边OA2为直角边作直角三角形,使得∠A2OA3=30°,依次以前一个直角三角形的斜边为直角边一直作含30°角的直角三角形,则A2A3=
4
3
4
3
;Rt△A2010OA2011的最小边长为
2
3
2009
2
3
2009

查看答案和解析>>

科目:初中数学 来源:2013年浙江省宁波市中考数学模拟试卷(五)(解析版) 题型:选择题

如图,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜边OA2为直角边作直角三角形,使得∠A2OA3=30°,依次以前一个直角三角形的斜边为直角边一直作含30°角的直角三角形,则Rt△A2010OA2011的最小边长为( )

A.22009
B.22010
C.
D.

查看答案和解析>>

科目:初中数学 来源:2012年广西柳州市中考数学一模试卷(解析版) 题型:选择题

如图,已知A1A2=1,∠OA1A2=90°,∠A1OA2=30°,以斜边OA2为直角边作直角三角形,使得∠A2OA3=30°,依次以前一个直角三角形的斜边为直角边一直作含30°角的直角三角形,则Rt△A2011OA2012的最小边长为( )

A.22010
B.22011
C.
D.

查看答案和解析>>

同步练习册答案