精英家教网 > 初中数学 > 题目详情
7.如图,AC是?ABCD的对角线,∠BAC=∠DAC,若AB=2,AC=2$\sqrt{3}$,则S?ABCD=2$\sqrt{3}$.

分析 由平行四边形的性质得出∠DAC=∠BCA,再由已知条件得出∠BAC=∠BCA,即可得出AB=BC;连接BD交AC于O,证明四边形ABCD是菱形,得出AC⊥BD,OA=OC=$\frac{1}{2}$AC=$\sqrt{3}$,OB=OD=$\frac{1}{2}$BD,由勾股定理求出OB,得出BD的长,即可得到?ABCD的面积=$\frac{1}{2}$AC•BD,即可得出结果.

解答 解:连接BD交AC于O,如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠BCA,
∵∠BAC=∠DAC,
∴∠BAC=∠BCA,
∴AB=BC,
∴四边形ABCD是菱形,
∴AC⊥BD,OA=OC=$\frac{1}{2}$AC=$\sqrt{3}$,OB=OD=$\frac{1}{2}$BD,
∴OB=$\sqrt{A{B}^{2}-O{A}^{2}}$=1,
∴BD=2OB=2,
∴?ABCD的面积=$\frac{1}{2}$AC•BD=$\frac{1}{2}$×2$\sqrt{3}$×2=2$\sqrt{3}$,
故答案为2$\sqrt{3}$.

点评 本题考查了平行四边形的性质、等腰三角形的判定、勾股定理、菱形面积的计算;熟练掌握平行四边形的性质,证明四边形是菱形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,正方形ABCD的两个顶点A,D分别在x轴和y轴上,CE⊥y轴于点E,OA=2,∠ODA=30°.若反比例函数y=$\frac{k}{x}$的图象过CE的中点F,则k的值为2$\sqrt{3}$+6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(  )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为AD=BE,AD⊥BE.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.

(1)如图1,若CD=CB,求证:CD是⊙O的切线;
(2)如图2,若F点在OB上,且CD⊥DF,求$\frac{AE}{AF}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为$\frac{25}{4}$或$\frac{7}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知二次函数y=ax2-ax(a为常数,且a≠0),图象的顶点为C.以下三个结论:①无论a为何值,该函数的图象与x轴一定有两个交点;②无论a为何值,该函数的图象在x轴上截得的线段长为2;③若该函数的图象与x轴有两个交点A、B,且S△ABC=1时,则a=8.其中正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为(  )
A.5B.6C.8D.12

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.关于一组数据:1,5,6,3,5,下列说法错误的是(  )
A.平均数是4B.众数是5C.中位数是6D.方差是3.2

查看答案和解析>>

同步练习册答案