精英家教网 > 初中数学 > 题目详情

若用公式法解方程,则方程的解为________.

答案:略
解析:

,所以


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•柳州)如图,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=
1
2
S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
 
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可设y=
x2-2
,用同样的方法也可求解.

查看答案和解析>>

科目:初中数学 来源: 题型:022

若用公式法解方程,则方程的解为________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=2,AC=BC=数学公式
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=数学公式S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).

附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=数学公式,y4=-数学公式
所以,原方程的解是y1=1,y2=-1,y3=数学公式,y4=-数学公式
再如x2-2=4数学公式,可设y=数学公式,用同样的方法也可求解.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(广西柳州卷)数学(带解析) 题型:解答题

如图,在△ABC中,AB=2,AC="BC=" 5 .
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).

附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=" 3" ,y4="-" 3 .
所以,原方程的解是y1=1,y2=-1,y3=" 3" ,y4="-" 3 .
再如 ,可设 ,用同样的方法也可求解.

查看答案和解析>>

同步练习册答案