精英家教网 > 初中数学 > 题目详情
已知函数y=的图象如图,以下结论:
①m<0;
②在每个分支上y随x的增大而增大;
③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;
④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.
其中正确的个数是(  )
A.4个B.3个C.2个D.1个
B

试题分析:①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故正确;
②在每个分支上y随x的增大而增大,正确;
③若点A(﹣1,a)、点B(2,b)在图象上,由图象可知a>b,所以a<b错误;
④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确,
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知?ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(-2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.
(1)求反比例函数y=的解析式;
(2)将?ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对于平面直角坐标系xOy中的点P(a,b),若点的坐标为()(其中k为常数,且),则称点为点P的“k属派生点”.
例如:P(1,4)的“2属派生点”为(1+),即(3,6).
(1)①点P的“2属派生点” 的坐标为____________; 
②若点P的“k属派生点” 的坐标为(3,3),请写出一个符合条件的点P的坐标____________;
(2)若点P在x轴的正半轴上,点P的“k属派生点”为点,且△为等腰直角三角形,则k的值为____________;
(3)如图, 点Q的坐标为(0,),点A在函数的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求B点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为(   )
A.1        B.2          C.3           D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先化简,再求值:
x2-4
x2+2x
÷(
x2+4
x
-4)
,其中x=
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算:
(1)
x2
x-1
-x-1

(2)
x2+2x
x2-4
-
2
x-2

(3)(
x
x+1
-
3x
x-1
)÷
x
x2-1

(4)(1+
2b
a-b
)
2
(1
2b
a+b
)
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=
探究:如图1,AH⊥BC于点H,则AH=       ,AC=    ,△ABC的面积SABC=      
拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为SABD=0)
(1)用含x,m,n的代数式表示SABD及SCBD
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.
发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在函数(x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则S1= _______ ,Sn= _________ .(用含n的代数式表示)

查看答案和解析>>

同步练习册答案