精英家教网 > 初中数学 > 题目详情
如图二次函数y=ax2+bx+c的图象经过A、B、C三点.
(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;
(2)求此抛物线的顶点坐标和对称轴;
(3)观察图象,当x取何值时,y<0,y=0,y>0.
【答案】分析:(1)直接利用图中的三个点的坐标代入解析式用待定系数法求解析式;
(2)把解析式化为顶点式求顶点坐标和对称轴;
(3)依据图象可知,当图象在x轴上方时,y>0,在x轴下方时,y<0,在x轴上时,y=0.
解答:解:(1)A(-1,0),B(0,-3),C(4,5),
设解析式为y=ax2+bx+c,
代入可得:
解得:
故解析式为:y=x2-2x-3;

(2)y=x2-2x-3=(x-1)2-4,
故顶点坐标为:(1,-4),对称轴为直线x=1;

(3)观察图象可得:当x<-1或x>3时,y>0,
当x=-1或x=3时,y=0,
当-1<x<3时,y<0.
点评:主要考查了用待定系数法求二次函数的解析式和二次函数及其图象的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年山东烟台海阳市九年级上期末数学试卷(解析版) 题型:填空题

二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是            

 

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:解答题

二次函数y=ax²-6ax+c(a>0)的图像抛物线过点C(0,4),设抛物线的顶点为D。

(1)若抛物线经过点(1,-6),求二次函数的解析式;

(2)若a=1时,试判断抛物线与x轴交点的个数;

(3)如图所示A、B是⊙P上两点,AB=8,AP=5。且抛物线过点A(x1,y1),B(x2,y2),并有AD=BD。设⊙P上一动点E(不与A、B重合),且∠AEB为锐角,若<a≤1时,请判断∠AEB与∠ADB的大小关系,并说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏盐城亭湖区九年级下学期第一次调研考试数学试卷(解析版) 题型:解答题

如图11,已知○为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).

1.求点B的坐标

2.若二次函数y=ax+bx+c的图象经过A、B、O三点,求此二次函数的解析式;

3.在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案