Ϊ½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«x2-1ÊÓΪһ¸öÕûÌ壬ȻºóÉèx2-1=y£¬Ôò
£¨x2-1£©2=y2£¬Ô­·½³Ì»¯Îªy2-5y+4=0£®¢Ù
½âµÃy1=1£¬y2=4
µ±y=1ʱ£¬x2-1=1£®¡àx2=2£®¡àx=¡ÀÊýѧ¹«Ê½£»
µ±y=4ʱ£¬x2-1=4£¬¡àx2=5£¬¡àx=¡ÀÊýѧ¹«Ê½£®
¡àÔ­·½³ÌµÄ½âΪx1=Êýѧ¹«Ê½£¬x2=-Êýѧ¹«Ê½£¬x3=Êýѧ¹«Ê½£¬x4=-Êýѧ¹«Ê½
½â´ðÎÊÌ⣺
£¨1£©Ìî¿Õ£ºÔÚÓÉÔ­·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓÃ______·¨´ïµ½Á˽µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁË______µÄÊýѧ˼Ï룮
£¨2£©½â·½³Ì£ºx4-x2-6=0£®

½â£º£¨1£©ÔÚÓÉÔ­·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓû»Ôª·¨´ïµ½Á˽µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룻
¹Ê´ð°¸Îª£º»»Ôª£»×ª»¯£»
£¨2£©Éèx2=y£¬Ô­·½³Ì¿É»¯Îªy2-y-6=0£¬
½âµÃ£ºy1=3£¬y2=-2£¬
¡ßx2=y£¾0£¬¡ày1=3£¬¼´x2=3£¬
Ôòx=¡À£®
·ÖÎö£º£¨1£©ÔÚÓÉÔ­·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓû»Ôª·¨´ïµ½Á˽µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룻
£¨2£©Éèx2=y£¬Ô­·½³Ì¿É»¯Îª¹ØÓÚyµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½âµÃµ½yµÄÖµ£¬¼´¿ÉÈ·¶¨³öxµÄÖµ£®
µãÆÀ£º´ËÌ⿼²éÁË»»Ôª·¨½âÒ»Ôª¶þ´Î·½³Ì£¬ÈÏÕæÔĶÁÌâÖеĽⷨÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÇëͬѧÃÇÈÏÕæÔĶÁÏÂÃæµÄÒ»¶ÎÎÄ×Ö²ÄÁÏ£¬È»ºó½â´ðÌâÄ¿ÖÐÌá³öµÄÓйØÎÊÌ⣮
Ϊ½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«x2-1ÊÓΪһ¸öÕûÌ壬ȻºóÉèx2-1=y£¬ÔòÔ­·½³Ì¿É»¯Îªy2-5y+4=0¢Ù
½âµÃy1=1£¬y2=4
µ±y=1ʱ£¬x2-1=1£¬¡àx2=2£¬x=¡À
2

µ±y=4ʱ£¬x2-1=4£¬¡àx2=5£¬x=¡À
5

¡àÔ­·½³ÌµÄ½âΪx1=
2
£¬x2=-
2
£¬x3=
5
£¬x4=-
5

½â·½³Ì£º£¨1£©£¨3x+5£©2-4£¨3x+5£©+3=0
£¨2£©x4-10x2+9=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
Ϊ½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«x2-1¿´×÷Ò»¸öÕûÌ壬Éèx2-1=y£¬ÔòÔ­·½³Ì¿É»¯Îªy2-5y+4=0£¬½âµÃy1=1£¬y2=4£®
µ±y1=1ʱ£¬x2-1=1£¬¡àx=¡À
2
£»µ±y2=4ʱ£¬x2-1=4£¬¡àx=¡À
5
£®
Òò´ËÔ­·½³ÌµÄ½âΪ£ºx1=
2
£¬x2=-
2
£¬x3=
5
£¬x4=-
5
£®
£¨1£©ÒÑÖª·½³Ì
1
x2-2x
=x2-2x-3
£¬Èç¹ûÉèx2-2x=y£¬ÄÇôԭ·½³Ì¿É»¯Îª
 
£¨Ð´³É¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³ÌµÄÒ»°ãÐÎʽ£©£®
£¨2£©¸ù¾ÝÔĶÁ²ÄÁÏ£¬½â·½³Ì£ºx£¨x+3£©£¨x2+3x+2£©=24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ϊ½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«x2-1ÊÓΪһ¸öÕûÌ壬ȻºóÉèx2-1=y£¬Ôò
£¨x2-1£©2=y2£¬Ô­·½³Ì»¯Îªy2-5y+4=0£®¢Ù
½âµÃy1=1£¬y2=4
µ±y=1ʱ£¬x2-1=1£®¡àx2=2£®¡àx=¡À
2
£»
µ±y=4ʱ£¬x2-1=4£¬¡àx2=5£¬¡àx=¡À
5
£®
¡àÔ­·½³ÌµÄ½âΪx1=
2
£¬x2=-
2
£¬x3=
5
£¬x4=-
5

½â´ðÎÊÌ⣺
£¨1£©Ìî¿Õ£ºÔÚÓÉÔ­·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓÃ
»»Ôª
»»Ôª
·¨´ïµ½Á˽µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁË
ת»¯
ת»¯
µÄÊýѧ˼Ï룮
£¨2£©½â·½³Ì£ºx4-x2-6=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²ÄÁÏ£ºÎª½â·½³Ìx4-x2-6=0£¬¿É½«·½³Ì±äÐÎΪ£¨x2£©2-x2-6=0£¬
È»ºóÉèx2=y£¬Ôò£¨x2£©2=y2£¬Ô­·½³Ì»¯Îªy2-y-6=0¡­¢Ù£¬
½âµÃy1=-2£¬y2=3£®µ±y1=-2ʱ£¬x2=-2ÎÞÒâÒ壬ÉáÈ¥£»
µ±y2=3ʱ£¬x2=3£¬½âµÃx=¡À
3
£®
ËùÒÔÔ­·½³ÌµÄ½âΪx1=
3
£¬x2=-
3
£®
ÎÊÌ⣺£¨1£©ÔÚÔ­·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓÃ
»»Ôª
»»Ôª
·¨´ïµ½Á˽µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁË
ת»¯
ת»¯
 µÄÊýѧ˼Ï룻
£¨2£©ÀûÓñ¾ÌâµÄ½âÌâ·½·¨£¬½â·½³Ì£¨x2-x£©2-4£¨x2-x£©-12=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²ÄÁÏ£ºÎª½â·½³Ìx4-x2-6=0£¬¿É½«·½³Ì±äÐÎΪ£¨x2£©2-x2-6=0£¬È»ºóÉèx2=y£¬Ôò£¨x2£©2=y2£¬Ô­·½³Ì»¯Îªy2-y-6=0¡­¢Ù£¬
½âµÃy1=-2£¬y2=3£®
µ±y1=-2ʱ£¬x2=-2ÎÞÒâÒ壬ÉáÈ¥£»µ±y2=3ʱ£¬x2=3£¬½âµÃx=¡À
3
£®
ËùÒÔÔ­·½³ÌµÄ½âΪx1=
3
£¬x2=-
3
£®
ÎÊÌ⣺ÀûÓñ¾ÌâµÄ½âÌâ·½·¨£¬½â·½³Ì£¨x2-x£©2-4£¨x2-x£©-12=0£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸