解:(1)在Rt △ABC中,BC= ∴点C的坐标为(10,0), 设经过K、B、C三点的抛物线解析式为y=ax2+bx+c(a≠0), 将点K(5,5)、B(0,0)、C(10,0)代入得 解得 ∴经过K、B、C三点的抛物线解析式为y=-+2x; |
|
(2)∵点D为AB的中点, ∴BD=AB=3, ∵∠DHB=∠A=90°,∠B=∠B, ∴△BHD∽△BAC, ∴ ∴; |
|
(3)∵QR//AB, |
|
(4)存在,分三种情况: ①如图(a),当PQ= PR时,过点P作PM⊥QR于M,则QM=RM, ∵∠1+∠2=90°,∠C+∠2=90°, ∴cos∠1=cos∠C=, ∴, ∴ ∴, ②如图(b),当PQ=RQ时, ∴x=6, ③如图(c),当PR=QR时,则R为PQ中垂线上的点,于是点R为EC的中点, ∴CR=CE=AC,AC=2, ∵tan∠C=, ∴ ∴ 综上,当x为或6或时, ∴△PQR为等腰三角形。 |
科目:初中数学 来源: 题型:
A、3 | B、4 | C、5 | D、6 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com