【题目】证明:两条平行线被第三条直线所截,一组同位角的平分线互相平行.
已知:如图,_______________________.
求证:_____________________________.
证明:
【答案】见解析
【解析】
根据题意画出图形,写出已知与求证,证明过程为:由AM与BN平行,利用两直线平行同位角相等得到一对角相等,再由AE与BF为角平分线,利用角平分线定义及等量代换得到一对同位角相等,利用同位角相等两直线平行可得出AE与BF平行,得证.
已知,AM∥BN,AE为∠CAM的平分线,BF为∠ABN的平分线,如图所示,
求证:AE∥BF.
证明:∵AM∥BN(已知),
∴∠CAM=∠ABN(两直线平行同位角相等),
∵AE为∠CAM的平分线,BF为∠ABN的平分线(已知),
∴∠CAE=∠CAM,∠ABF=∠ABN(角平分线定义),
∴∠CAE=∠ABF(等量代换),
∴AE∥BF(同位角相等两直线平行).
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是( )
A. ①②④B. ②③C. ①③④D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.
(1)跳绳、毽子的单价各是多少元?
(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,若动点P从点C开始,按的路径运动,且速度为每秒1cm,设出发的时间为t秒.
出发2秒后,求的面积;
当t为几秒时,BP平分;
问t为何值时,为等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.
请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC( )
∴∠C=∠CEF.( )
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C= (等量代换)
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
(3)解决问题
如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A= .(之间写出结论,不用写计算过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,试说明:∠A+∠B+∠C=180°
方法一: 过点A作DE∥BC. 则(填空)
∠B=∠ ,∠C=∠
∵ ∠DAB+∠BAC+ ∠CAE=180°
∴∠A+∠B+∠C=180°
方法二: 过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F(补全说理过程 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.
(1)甲、乙两队单独完成各需多少天?
(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;再以A3为圆心,1为半径向右画弧交OB于点A4,得第4条线段A3A4;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n的值是( )
A. 6B. 7C. 8D. 9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0).下列结论中,正确的一项是( )
A. <0
B. <0
C. <0
D.4acb20
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com