精英家教网 > 初中数学 > 题目详情

已知二次函数yx2+ax+a-2.

(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.

(2)设a<0,当此函数图象与x轴的两个交点AB的距离为时,求出此二次函数的解析式.

(3)若(2)中的条件不变,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

解(1)因为△=a2-4(a-2)=(a-2)2+4>0,所以不论a为何实数,此函数图象与x轴总有两个交点.

(2)设x1x2x2+ax+a-2=0的两个根,由韦达定理得,

x1+x2=-ax1x2a-2,                

因两交点的距离是AB,所以.

即(x1x2)2=13,

变形为(x1+x2)2-4x1x2=13,所以(-a)2-4(a-2)=13

整理,得a2-4a-5=0,解得a1=5,或a2=-1.

又因为a<0,所以a=-1,

所以此二次函数的解析式为yx2x-3. 

(3)设点P的坐标为(x0y0),

因为AB.

所以SPABAB·,所以

所以=3,则y0=±3.                  

y0=3时,x02x0-3=3,解得x0=-2,或3;

y0=-3时,x02x0-3=-3,解得x0=0,或1.

综上所述, P点坐标是(-2,3),(3,3),(0,-3)或(1,-3). 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分10分)已知二次函数y=x2+bx-3的图像经过点P(-2,5).

(1)求b的值,并写出当0<x≤3时y的取值范围;

(2)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图像上.

①试比较y1和y2的大小;

②当m取不小于5的任意实数时,请你探索:y1、y2、y3能否作为一个三角形

三边的长,并说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)已知二次函数y=x2+bx-3的图像经过点P(-2,5).
(1)求b的值,并写出当0<x≤3时y的取值范围;
(2)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图像上.
①试比较y1和y2的大小;
②当m取不小于5的任意实数时,请你探索:y1、y2、y3能否作为一个三角形
三边的长,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+bx+c的图像与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=3,求二次函数的解析式,并写出顶点坐标。

查看答案和解析>>

科目:初中数学 来源:2011年蒙城六中九年级(上)第一次教学质量检测数学卷 题型:解答题

 已知二次函数yx2-2x-3.求:

(1)抛物线与xy轴相交的交点坐标;

  (2)画出此抛物线图象;

(3)利用图象回答下列问题:

      方程x2-2x-3=0的解是什么?

      x取什么值时,函数值大于0

      x取什么值时,函数值小于0

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源:2011届江苏省太仓市九年级上学期期中考试数学卷 题型:选择题

已知二次函数yx2-4x+3的图象是由yx2+2x-1的图象先向上平移一个单位,再向

   A.左移3个单位    B.右移3个单位    C.左移6个单位    D.右移6个单位

 

查看答案和解析>>

同步练习册答案