精英家教网 > 初中数学 > 题目详情
6.已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出200件,市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过280件,设这种产品每件降价x元,每星期的销售利润为w元.
(1)求w与x之间的函数关系式,并写出自变量x的取值范围;
(2)该产品销售价定为每件为多少元时,每星期的销售利润最大?最大利润是多少元?
(3)设该产品的售价为m元,则m在什么范围时,每星期的销售利润不低于3420元,请直接写出结果56≤m≤60.

分析 (1)根据利润=(售价-进价)×销售件数即可求得W与x之间的函数关系式;
(2)利用配方法求得函数的最大值,从而可求得答案;
(3)根据每星期的销售利润不低于3420元列不等式求解即可.

解答 解:(1)w=(20-x)(200+20x)=-20x2+200x+4000,
∵200+20x≤280,
∴0≤x≤4,且x为整数;

(2)w=-20x2+200x+4000=-20(x-5)2+4500,
∵当x<5时,w随x的增大而增大,
∴当x=4时有最大利润4480元; 

(3)根据题意得:
-20(x-5)2+4500≥3420,
解得:5-3$\sqrt{6}$≤x≤5+3$\sqrt{6}$.
又∵x≤4,
∴0≤x≤4,
即售价不低于56元且不高于60元时,每星期利润不低于3420元,
故答案为:56≤m≤60.

点评 此题考查二次函数的性质及其应用以及抛物线的基本性质,将实际问题转化为求函数最值问题,从而来解决实际问题是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.(1)计算:(3-π)0-($\frac{1}{2}$)-1+tan45°;
(2)解不等式:3(x-1)>2x+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:$\root{3}{-8}$+|1-$\sqrt{2}}$|-$\frac{1}{cos45°}$+(-$\frac{1}{2}}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,△ABC中,∠ACB=90°,∠1=∠A.
(1)试说明CD是△ABC的高;
(2)如果AC=8,BC=6,AB=10,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.化简:
(1)5xy2+3x2y-xy2-2x2y-1;
(2)(a2+2a)-2($\frac{1}{2}$a2+4a)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在△ABC中,已知∠A=$\frac{1}{3}$∠B=$\frac{1}{5}$∠C,求△ABC各个内角的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为4厘米,BA与MN在同一直线上,开始时点A与点M重合,让△ABC向右移动,最后点A与点N重合.
(1)试写出两图形重叠部分的面积y(厘米2)与线段MA的长度x(厘米)之间的函数关系式;
(2)作出(1)中所求函数的图象;
(3)当点A向右移动多少厘米时,重叠部分的面积是2厘米2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知关于x的方程$\frac{ax-1}{x-2}=\frac{1}{x-2}$无解,则a=0或1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知关于x的方程2x2+(k-2)x+1=0有两个相等的实数根,求k的值.

查看答案和解析>>

同步练习册答案