精英家教网 > 初中数学 > 题目详情
已知一抛物线y=ax2+bx+c,图象经过(1,-4),(-1,0),(2,-3)
求:(1)该抛物线的解析式;
(2)若它与x轴的交点坐标为A、B,与y轴的交点坐标为C,求三角形ABC的面积.
分析:(1)已知抛物线经过三点的坐标,代入抛物线解析式,可求a、b、c,确定抛物线解析式;
(2)根据求出的抛物线解析式,求A,B,C三点坐标,根据三点的位置及三角形的面积公式求解.
解答:解:
(1)把(1,-4),(-1,0),(2,-3)三点代入抛物线y=ax2+bx+c中
得:
a+b+c=-4
a-b+c=0
4a+2b+c=-3

解得
a=1
b=-2
c=-3

∴抛物线解析式为:y=x2-2x-3;

(2)由y=x2-2x-3,令y=0,
得x1=-1,x2=3.
令x=0,得y=-3,
∴A(-1,0),B(3,0),C(0,-3),
∴S△ABC=
1
2
×4×3=6.
点评:本题考查了抛物线解析式的一般求法,抛物线性质的运用及三角形面积公式的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令k=
c
a
,试问:是否存在实数k,使线段A1B1的长为4
2
.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.
(1)顶点P的坐标是
(-1,4)
(-1,4)

(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.

查看答案和解析>>

科目:初中数学 来源:2013年贵州省贵阳市中考数学试卷(解析版) 题型:解答题

已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.
(1)顶点P的坐标是______;
(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令数学公式,试问:是否存在实数k,使线段A1B1的长为数学公式.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》中考题集(49):34.4 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令,试问:是否存在实数k,使线段A1B1的长为.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案