精英家教网 > 初中数学 > 题目详情

(1)如图1,OC平分∠AOB,点P在OC上,若⊙P与OA相切,那么⊙P与OB位置关系是     

(2)如图2,⊙O的半径为2,∠AOB=120°,

①若点P是⊙O上的一个动点,当PA=PB时,是否存在⊙Q,同时与射线PA.PB相切且与⊙O相切,如果存在,求出⊙Q的半径; 如果不存在,请说明理由.

②若点P在BO的延长线上,且满足PA⊥PB,是否存在⊙Q,同时与射线PA.PB相切且与⊙O相切,如果存在,请直接写出⊙Q的半径; 如果不存在,请说明理由.

 

 

 

【答案】

(1)相切;(2)①存在,半径可以为,4 ,,;②存在.其半径可以为1,

【解析】

试题分析:(1)作PD⊥OA于A,PE⊥OB于B,则根据角平分线定义得到PD=PE,根据切线的性质由⊙P与OA相切得到PD为⊙P的半径,然后根据切线的判定定理可得到OB为⊙P的切线;

(2)①由PA=PB得到点P为∠AOB的平分线或反向延长线与⊙O的交点,分类讨论:当P点在优弧AB上时,当P点在劣弧AB上时,然后解四个方程即可得到满足条件的⊙Q的半径;

②作QH⊥PB于H,由PA⊥PB得∠APB=90°,由⊙Q与射线PA.PB相切,根据切线的性质得PQ平分∠APB,即∠QPH=45°,所以QH=PH,在Rt△POA中易得OP=1,设⊙Q的半径为r,即PH=QH=r,则OH=PH﹣OP=r﹣1,在Rt△OQH中,根据勾股定理得OQ2=OH2+QH2=(r﹣1)2+r2,

若⊙Q与⊙O内切时,OQ=2﹣r,得到(2﹣r)2=(r﹣1)2+r2,若⊙Q与⊙O外切时,OQ=2+r,得到(2+r)2=(r﹣1)2+r2,然后解两个方程即可得到满足条件的⊙Q的半径.

试题解析:(1)作PD⊥OA于A,PE⊥OB于B,如图1,

∵OC平分∠AOB,

∴PD=PE,

∵⊙P与OA相切,

∴PD为⊙P的半径,

∴PE为⊙的半径,

而PE⊥OB,

∴OB为⊙P的切线;

故⊙P与OB位置关系是相切;

(2)①存在

∵PA=PB,

∴点P为∠AOB的平分线或反向延长线与⊙O的交点,

如图2,

当P点在优弧AB上时, 设⊙Q的半径为,

若⊙Q与⊙O内切,可得,解得 ,

若⊙Q与⊙O外切,可得,  解得 ,

当P点在劣弧AB上时,

同理可得:x=,x= ,

综上所述,存在⊙Q,半径可以为,4 ,,;

②存在.作QH⊥PB于H,如图3,

∵PA⊥PB,

∴∠APB=90°,

∵⊙Q与射线PA.PB相切,

∴PQ平分∠APB,

∴∠QPH=45°,

∴△QHP为等腰直角三角形,

∴QH=PH,

在Rt△POA中,∠AOP=60°,OA=2,

∴OP=1,

设⊙Q的半径为r,即PH=QH=r,则OH=PH﹣OP=r﹣1,

在Rt△OQH中,OQ2=OH2+QH2=(r﹣1)2+r2,

若⊙Q与⊙O内切时,OQ=2﹣r,则(2﹣r)2=(r﹣1)2+r2,解得r1=1,r2=﹣3(舍去);

若⊙Q与⊙O外切时,OQ=2+r,则(2+r)2=(r﹣1)2+r2,解得r1=,r2=(舍去);

综上所述,存在⊙Q,其半径可以为1,

考点:圆的综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,张伯伯利用假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来,假设铅垂P不动,鱼漂移动了一段距离BC,且顶端恰好与水面齐平,(即PA=PC)水平l与OC的夹角α为8°(点A在OC上),求铅锤P处的水深h.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,∠AOB是直角,OD平∠BOC,OE平分∠AOC.
求:(1)∠EOD的度数.
(2)当OC在∠A0B内绕点O转动时,∠DOE的值会不会改变?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•开平区一模)如图,抛物线y=ax2+bx+4与x轴交于A、B两点,且A、B两点的坐标分别  为(3,0)、(-1,0),与y轴交于点C.
(1)求出该抛物线的解析式;
(2)若抛物线的顶点为M,求四边形AOCM的面积;
(3)若有两个动点D、E同时从点O出发,其中点D以每秒
32
个单位长度的速度沿线段OA运动,点E以每秒4个单位长度的速度沿折线O→C→A运 动,设运动时间为t秒.
①在运动过程中,是否存在DE∥OC?若存在,请求出此时t的值;若不存在,请说明理由; 
②若△ODE的面积为S,求出S关于t的函数解析式,并写出自变量t的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浙江一模)如图1,在平面上,给定了半径为r的⊙O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这种把点P变为点P′的变换叫做反演变换,点P与点P′叫做互为反演点,⊙O称为基圆.
(1)如图2,⊙O内有不同的两点A、B,它们的反演点分别是A′、B′,则与∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如图3,⊙O内有一点M,请用尺规作图画出点M的反演点M′;(保留画图痕迹,不必写画法).
(3)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆O的半径为r,另一个半径为r1的⊙C,作射线OC交⊙C于点A、B,点A、B关于⊙O的反演点分别是A′、B′,点M为⊙C上另一点,关于⊙O的反演点为M′.求证:∠A′M′B′=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中有矩形OABC,O是坐标系的原点,A在x轴上,C在y轴上,OA=6,OC=2.
(1)分别写出A、B、C三点的坐标;
(2)已知直线l经过点P(0,-
12
)并把矩形OABC的面积平均分为两部分,求直线l的函数表达式;
(3)设(2)的直线l与矩形的边OA、BC分别相交于M和N,以线段MN为折痕把四边形MABN翻折(如图2),使A、B两点分别落在坐标平面的A'、B'位置上.求点A'的坐标及过A'、B、C三点的抛物线的函数表达式.
精英家教网

查看答案和解析>>

同步练习册答案