精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.

(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.

【答案】
(1)解:∵抛物线y=(x+2)2+m经过点A(﹣1,0),

∴0=1+m,

∴m=﹣1,

∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,

∴点C坐标(0,3),

∵对称轴x=﹣2,B、C关于对称轴对称,

∴点B坐标(﹣4,3),

∵y=kx+b经过点A、B,

,解得

∴一次函数解析式为y=﹣x﹣1


(2)解:由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.


【解析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出一次函数解析式.(2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点ABC(即三角形的顶点都在格点上).

1ABC的面积为__________

2)在图中作出ABC关于直线MN的对称图形A′B′C′.

3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.( 保留痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x+y)+10y+x,则称实数t加成数,将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h.规定q=t﹣h,f(m)=,例如:321是一个加成数,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,q=321﹣213=108,f(m)==12.

(1)当f(m)最小时,求此时对应的加成数的值;

(2)若f(m)是24的倍数,则称f(m)是节气数,猜想这样的节气数有多少个,并求出所有的节气数”.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2
上述4个判断中,正确的是(

A.①②
B.①④
C.①③④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.

(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,当△ABC为正三角形时,点E是否AC的中点?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为(

A.4
B.6
C.3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王师傅常用角尺平分一个角,如图所示,学生小明可用三角尺平分一个角,他们在∠AOB两边上分别取OMON,使OMON,前者使角尺两边相同刻度分别与MN重合,角尺顶点为P;后者分别过MNOAOB的垂线,交点为P,则均可得到△OMP≌△ONP,其依据分别是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折得到△FMN,若MF∥AD,FN∥DC,则∠D的度数为( )

A. 115° B. 105° C. 95° D. 85°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC,BD交于点E,DFACF点,若∠ADF=3FDC,则∠DEC的度数是(  )

A. 30° B. 45° C. 50° D. 55°

查看答案和解析>>

同步练习册答案