【题目】如图,AD∥BC,∠1=∠B,∠2=∠3.
(1)试说明AB∥DE;
(2)AF与DC的位置关系如何;为什么;
(3)若∠B=68°,∠C=46°20′,求∠2的度数.
注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.
解:
(1)∵AD∥BC,(已知)
∴∠1=∠ . ( )
又∵∠1=∠B,(已知)
∴∠B=∠ ,(等量代换)
∴ ∥ . ( )
(2)AF与DC的位置关系是: .理由如下:
∵AB∥DE,(已知)
∴∠2=∠ . ( )
又∵∠2=∠3,(已知)
∴∠ =∠ .(等量代换)
∴ ∥ . ( )
【答案】(1)DEC;两直线平行,内错角相等;DEC;AB;DE;同位角相等,两直线平行;(2)AF∥DC;AGD;两直线平行,内错角相等;3;AGD;AF;DC;内错角相等,两直线平行;(3)65°40′.
【解析】
根据平行线的判定和性质解答即可.
(1)∵AD∥BC,( 已知 )
∴∠1=∠DEC.(两直线平行,内错角相等 )
又∵∠1=∠B,( 已知 )
∴∠B=∠DEC,( 等量代换 )
∴AB∥DE.( 同位角相等,两直线平行)
(2)AF与DC的位置关系是:AF∥DC.
∵AB∥DE,( 已知 )
∴∠2=∠AGD.( 两直线平行,内错角相等 )
又∵∠2=∠3,( 已知 )
∴∠3=∠AGD,( 等量代换)
∴AF∥DC.( 内错角相等,两直线平行 )
(3)∵AF∥DC,
∴∠AFB=∠C.
∵AD∥BC,
∴∠AFB=∠DAF,∠BAD+∠B=180°.
∴∠2+∠C+∠B=180°.
又∵∠B=68°,∠C=46°20′,
∴∠2=65°40′.
故答案为:(1)DEC;两直线平行,内错角相等;DEC;AB;DE;同位角相等,两直线平行;(2)AF∥DC;AGD;两直线平行,内错角相等;3;AGD;AF;DC;内错角相等,两直线平行.
科目:初中数学 来源: 题型:
【题目】如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程、与时间的关系,观察图象并回答下列问题:
(1)乙出发时,乙与甲相距 千米;
(2)走了一段路程后,乙有事耽搁,停下来时间为 小时;
(3)甲从出发起,经过 小时与乙相遇;
(4)甲行走的平均速度是多少千米小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,观察数轴,请回答:
(1)点C与点D的距离为______ ,点B与点D的距离为______ ;
(2)点B与点E的距离为______ ,点A与点C的距离为______ ;
发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为 ______(用m,n表示)
(3)利用发现的结论解决下列问题: 数轴上表示x的点P与B之间的距离是1,则 x 的值是______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):
(1)请直接写出:花园的半径是 米,小明的速度是 米/分,a= ;
(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:
①小明遇到同学的地方离出发点的距离;
②小明返回起点O的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小敏思考解决如下问题:
原题:如图1,点,分别在菱形的边,上,,求证:.
(1)小敏进行探索,若将点,的位置特殊化:把绕点旋转得到,使,点,分别在边,上,如图2,此时她证明了.请你证明.
(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作,,垂足分别为,.请你继续完成原题的证明.
(3)如果在原题中添加条件:,,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.
(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);
(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;
(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知平行四边形ABCD,BC∥x轴,BC=6,点A的坐标为(1,4),点B的坐标为(﹣3,﹣4),点C在第四象限,点P是平行四边形ABCD边上的一个动点.
(1)若点P在边CD上,BC=CP,求点P的坐标;
(2)如图2,若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=﹣x+1上,求点P的坐标;
(3)若点P在边AB,AD,BC上,点E是AB与y轴的交点,如图3,过点P作y轴的平行线PF,过点E作x轴的平行线E,它们相交于点F,将△PEF沿直线PE翻折,当点F的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60 m到达点C,测得点B在点C的北偏东60°方向,如图②.
(1)求∠CBA的度数;
(2)求出这段河的宽(结果精确到1 m,参考数据:≈1.41,≈1.73).
① ②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com