精英家教网 > 初中数学 > 题目详情

在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成.已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每天的工作量相同,乙工程队每人每天的工作量相同).甲工程队1天、乙工程2天共修路200米;甲工程队2天、乙工程队3天共修路350米.
(1)试问甲乙两个工程队每天分别修路多少米?
(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?
(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队各做多少天?最低费用为多少?

(1)甲工程队每天修路100米,乙工程队每天修路50米;
(2)甲队可以抽调1人或2人;
(3)甲工程队需做30天,乙工程队需做20天,最低费用为25万元.

解析试题分析:(1)设甲队每天修路x米,乙队每天修路y米,然后根据两队修路的长度分别为200米和350米两个等量关系列出方程组,然后解方程组即可得解;
(2)根据甲队抽调m人后两队所修路的长度不小于4000米,列出一元一次不等式,然后求出m的取值范围,再根据m是正整数解答;
(3)设甲工程队修a天,乙工程队修b天,根据所修路的长度为4000米列出方程整理并用a表示出b,再根据0≤b≤30表示出a的取值范围,再根据总费用等于两队的费用之和列式整理,然后根据一次函数的增减性解答.
试题解析:(1)设甲队每天修路x米,乙队每天修路y米,
依题意得,
解得
答:甲工程队每天修路100米,乙工程队每天修路50米;
(2)依题意得,
解得,
∵0<m<10,
 ,
∵m为正整数,
∴m=1或2,
∴甲队可以抽调1人或2人;
(3)设甲工程队修a天,乙工程队修b天,
依题意得,100a+50b=4000,
所以,b=80﹣2a,
∵0≤b≤30,
∴0≤80﹣2a≤30,
解得25≤a≤40,
又∵0≤a≤30,
∴25≤a≤30,
设总费用为W元,依题意得,
W=0.6a+0.35b,
=0.6a+0.35(80﹣2a),
=﹣0.1a+28,
∵﹣0.1<0,
∴当a=30时,W最小=﹣0.1×30+28=25(万元),
此时b=80﹣2a=80﹣2×30=20(天).
答:甲工程队需做30天,乙工程队需做20天,最低费用为25万元.
考点:1.二元一次方程组,2.不等式组,3.一次函数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

漳州三宝之一“水仙花”畅销全球,某花农要将规格相同的800件水仙花运往A,B,C三地销售,要求运往C地的件数是运往A地件数的3倍,各地的运费如下表所示:

 
A地
B地
C地
运费(元/件)
20
10
15
(1)设运往A地的水仙花x(件),总运费为y(元),试写出y与x的函数关系式;
(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知函数与函数的图象大致如图.若试确定自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;

(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,
①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.
②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.

(1)求点A、B的坐标,并求边AB的长;
(2)求点D和点C的坐标;
(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

A、B两码头相距150千米,甲客船顺流由A航行到B,乙客船逆流由B到A,若甲、乙两客船在静水中的速度相同,同时出发,它们航行的路程y(千米)与航行时间x(时)的关系如图所示.

(1)求客船在静水中的速度及水流速度;
(2)一艘货轮由A码头顺流航行到B码头,货轮比客船早2小时出发,货轮在静水中的速度为10千米/时,在此坐标系中画出货轮航程y(千米)与时间x(时)的关系图象,并求货轮与客船乙相遇时距A码头的路程。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.

(1)求双曲线和直线的解析式;
(2)直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,点分别在轴、轴的正半轴上,且,点为线段的中点.
(1)如图1,线段的长度为________________;

(2)如图2,以为斜边作等腰直角三角形,当点在第一象限时,求直线所对应的函数的解析式;

(3)如图3,设点分别在轴、轴的负半轴上,且,以为边在第三象限内作正方形,请求出线段长度的最大值,并直接写出此时直线所对应的函数的解析式.

图2

 

 

查看答案和解析>>

同步练习册答案