【题目】如图,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形。
(1)求证AE=CG,并说明理由。
(2)连接AG,若AB=17,DG=13,求AG的长.
【答案】(1)AE=CG;(2)3
【解析】
(1)因为四边形EFGD是正方形,所以DE=DG,∠EDC+∠CDG=90°,由四边形ABCD是正方形,得到∠ADE=∠CDG,根据全等三角形的判定(SAS)得到△ADE≌△CDG,再根据全等三角形的性质得到AE=CG;
(2)由(1)知,AE=CG,又因为∠DCG=∠DAE=45°,结合题意得到∠ACG=90°,
所以得到AE⊥CG,过E作EH⊥AD,设AH=EH=x,则根据勾股定理得到,解得x=5,则AE=CG=5,故可得AG=3.
(1)理由是:如图1,∵四边形EFGD是正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四边形ABCD是正方形,
∴AD =CD,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
∴△ADE≌△CDG(SAS),
∴AE=CG.
(2)由(1)知,AE=CG,又∠DCG=∠DAE=45°,
∵∠ACD=45°,
∴∠ACG=90°,
∴CG⊥AC,即AE⊥CG,
过E作EH⊥AD,设AH=EH=x,则
解得x=5,则AE=CG=5,
所以AG==3.
科目:初中数学 来源: 题型:
【题目】某地的一座人行天桥如图所示,天桥高为6米,坡面的坡度为,文化墙在天桥底部正前方8米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(参考数据:,)
(1)若新坡面坡角为,求坡角度数;
(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OP1A1B1,A1P2A2B2,A2P3A3B3,An﹣1PnAnBn都是正方形,其中点A1、A2、A3…An在y轴上,点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)在反比例函数y=(x>0)的图象上,已知B1(﹣1,1),则点Pn的坐标为( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数与x轴交于点C,与反比例函数交于点和点B.
(1)求反比例函数表达式及点B的坐标;
(2)点P是x轴上的一点,若的面积是6,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.
(1)求证:△CDE∽△CBF;
(2)若B为AF的中点,CB=3,DE=1,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,曲线AB是抛物线的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线的一部分.曲线AB与BC组成图形W由点C开始不断重复图形W形成一组“波浪线”.若点,在该“波浪线”上,则m的值为________,n的最大值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com