1£®ÀûÓÃÒòʽ·Ö½â·¨½âÒ»Ôª¶þ´Î·½³ÌµÄ˼ÏëÍê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©Ð´³öÒ»¸öÒ»Ôª¶þ´Î·½³Ì£¬Ê¹Õâ¸ö·½³ÌÒ»¸ö¸ùΪ1£¬ÁíÒ»¸ö¸ùÊÇ2µÄÒ»Ôª¶þ´Î·½³Ì£º£¨x-1£©£¨x-2£©=0£»
£¨2£©Ð´³öÒ»¸ö¸ùΪ-2£¬ÁíÒ»¸ö¸ùxÂú×ã0£¼x£¼2µÄÒ»Ôª¶þ´Î·½³Ì£ºx2-x-2=0£»
£¨3£©Ð´³öÒ»¸öÒ»Ôª¶þ´Î·½³Ì£¬Ê¹Õâ¸ö·½³ÌµÄ¶þ´ÎÏîϵÊýΪ2£¬Ò»¸ö¸ùΪ-3£¬ÁíÒ»¸ùxÂú×ã1£¼x£¼3µÄÒ»Ôª¶þ´Î·½³Ì£º2x2-18=0£®

·ÖÎö £¨1£©ÓÉÒ»¸öÒ»Ôª¶þ´Î·½³ÌʹËüµÄ¸ùΪ1£¬2£¬¸ù¾Ý·½³Ì¸ùµÄ¶¨Ò壬¼´¿ÉÇóµÃ´ð°¸£®
£¨2£©ÓÉÓÚ·½³ÌÁíÒ»¸ö¸ùÂú×ã0£¼x£¼2£¬ÉèÁíÒ»¸ö¸ùΪ1£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹Øϵ¼ÆËã³ö-2+1=-1£¬-2¡Á1=-2£¬È»ºóд³öÒÔ-2ºÍ1ΪÁ½¸ùµÄÒ»Ôª¶þ´Î·½³ÌΪx2-x-2=0£®
£¨3£©±¾Ìâ¸ù¾ÝÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄ¶¨Òå¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¶¨ÒåÇó½â£®

½â´ð ½â£º£¨1£©¡ßÒ»Ôª¶þ´Î·½³ÌʹËüµÄ¸ùΪ1£¬2£¬
¡à£¨x-1£©£¨x-2£©=0£®
¹Ê´ð°¸Îª£º£¨x-1£©£¨x-2£©=0£®

£¨2£©¡ßÒ»¸ö¸ùΪ-2£¬ÁíÒ»¸ö¸ùxÂú×ã0£¼x£¼2£¬ÉèÁíÒ»¸ö¸ùΪ1£¬
¡à-2+1=-1£¬-2¡Á1=-2£¬
¡àÒÔ-2ºÍ1ΪÁ½¸ùµÄÒ»Ôª¶þ´Î·½³ÌΪx2-x-2=0£®
¹Ê´ð°¸Îª£ºx2-x-2=0£®

£¨3£©´ð°¸²»Î¨Ò»£®ÉèÒ»Ôª¶þ´Î·½³ÌΪ2x2+bx+c=0£¨a¡Ù0£©£¬°Ñx=-3´úÈë¿ÉµÃ£¬18-3b+c=0£¬ËùÒÔÖ»Òªb£¬cµÄÖµÂú×ã3b-c=18¼´¿É£®È磺b=0£¬c=-18ʱ£¬2x2-18=0£®
¹Ê´ð°¸ÊÇ£º2x2-18=0£®

µãÆÀ ´ËÌ⿼²éÁ˽âÒ»Ôª¶þ´Î·½³Ì--Òòʽ·Ö½â·¨£¬·½³Ì¸ùµÄÒâÒ壮עÒâÈô·½³ÌÓÐÁ½¸ù·Ö±ðΪx1£¬x2£¬Ôò¿ÉµÃÆäÖзûºÏÌõ¼þµÄ·½³ÌΪ£º£¨x-x1£©£¨x-x2£©=0£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³ÇøÇàÉÙÄ꽡¿µÑо¿ÖÐÐÄËæ»ú³éÈ¡Á˱¾ÇøÈô¸ÉÃûÖС¢Ð¡Ñ§Éú£¬¶ÔËûÃǵÄÊÓÁ¦×´¿ö½øÐÐÁ˵÷²é£¬²¢°Ñµ÷²é½á¹û»æÖƳÉͳ¼Æͼ£®£¨½üÊӳ̶ȷÖÇá¶È¡¢Öжȡ¢¸ß¶ÈÈýÖÖ£©

£¨1£©ÉÈÐÎͳ¼ÆͼÖС°²»½üÊÓ¡±ËùÔÚµÄÉÈÐÎÔ²ÐĽǵĶÈÊýÊÇ151.2¡ã£»
£¨2£©Ç󱾴γé²éµÄÖÐѧÉúÈËÊý£»
£¨3£©¸ÃÇøÓÐÖÐѧÉú8000ÈË£¬¼ÆËã¸ÃÇøµÄÖÐѧÉú»¼¡°¸ß¶È¡±½üÊÓµÄÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÒÑÖª¡ÏA=60¡ã£¬ÏÂÁÐÌõ¼þÄÜÅж¨AB¡ÎCDµÄÊÇ£¨¡¡¡¡£©
A£®¡ÏC=60¡ãB£®¡ÏE=60¡ãC£®¡ÏAFD=60¡ãD£®¡ÏAFC=60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬Èç¹û?ABCDµÄÄڽǡÏBADµÄƽ·ÖÏß½»BCÓÚµãE£¬ÇÒAE=BE£¬
£¨1£©Çó?ABCD¸÷ÄڽǵĶÈÊý£»
£¨2£©ÈôAB=4£¬AD=5£¬Çó?ABCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬ÒÑÖªAB¡ÎCD£¬BEƽ·Ö¡ÏABC£¬ÇÒCDÓÚOµã£¬¡ÏCDE=150¡ã£¬Ôò¡ÏCΪ120¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁи÷¶ÔÊýÖУ¬ÊǶþÔªÒ»´Î·½³Ì3x-y=-7µÄ½âµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=-1}\\{y=4}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=-2}\\{y=-3}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁз½³ÌÖУ¬ÊÇÒ»Ôª¶þ´Î·½³ÌµÄÊÇ£¨¡¡¡¡£©
A£®x2-x+4=0B£®x=$\frac{1}{x}$C£®x2-3x-2y=0D£®x2+2=£¨x-1£©£¨x+2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®·½³Ì×é$\left\{\begin{array}{l}{x=y+2}\\{x+y=4}\end{array}\right.$µÄ½âÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚƽÐÐËıßÐÎABCDÖУ¬µãE¡¢F·Ö±ðÔÚ¶Ô½ÇÏßACÉÏ£¬ÇÒAE=CF£¬Á¬½áDE¡¢BE¡¢DF¡¢BF£¬ÔòËıßÐÎDEBFÊÇƽÐÐËıßÐÎÂð£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸