精英家教网 > 初中数学 > 题目详情
如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式.
(2)求函数图象的顶点坐标及D点的坐标.
(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.
(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在SADP=SBCD?若存在,请求出P点的坐标;若不存在.请说明理由.
(1)二次函数解析式为:y=x2﹣4x+6;
(2)函数图象的顶点坐标为(4,﹣2),点D的坐标为(6,0);
(3)△BDE的面积为7.5.
(4)存在,P1(4+),P2(4﹣),P3(3,﹣),P4(5,﹣).

试题分析:(1)利用待定系数法求出b,c即可求出二次函数解析式;
(2)把二次函数式转化可直接求出顶点坐标,由A对称关系可求出点D的坐标;
(3)由待定系数法可求出BC所在的直线解析式,与抛物线组成方程求出点E的坐标,利用△BDE的面积=△CDB的面积+△CDE的面积求出△BDE的面积;
(4)设点P到x轴的距离为h,由SADP=SBCD求出h的值,根据h的正,负值求出点P的横坐标即可求出点P的坐标.
试题解析:(1)∵二次函数y=x2+bx+c的图象过A(2,0),B(8,6)
,解得
∴二次函数解析式为:y=x2﹣4x+6;
(2)由y=x2﹣4x+6,得y=(x﹣4)2﹣2,
∴函数图象的顶点坐标为(4,﹣2),
∵点A,D是y=x2+bx+c与x轴的两个交点,
又∵点A(2,0),对称轴为x=4,
∴点D的坐标为(6,0);
(3)∵二次函数的对称轴交x轴于C点.
∴C点的坐标为(4,0)
∵B(8,6),
设BC所在的直线解析式为y=kx+b,
解得
∴BC所在的直线解析式为y=x﹣6,
∵E点是y=x﹣6与y=x2﹣4x+6的交点,
x﹣6=x2﹣4x+6
解得x1=3,x2=8(舍去),
当x=3时,y=﹣3,
∴E(3,﹣),
∴△BDE的面积=△CDB的面积+△CDE的面积=×2×6+×2×=7.5.
(4)存在,
设点P到x轴的距离为h,
∵SBCD=×2×6=6,SADP=×4×h=2h,
∵SADP=SBCD
∴2h=6×,解得h=
当P在x轴上方时,
=x2﹣4x+6,解得x1=4+,x2=4﹣
当当P在x轴下方时,
=x2﹣4x+6,解得x1=3,x2=5,
∴P1(4+),P2(4﹣),P3(3,﹣),P4(5,﹣).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.

(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t=    时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;
(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于二次函数y=x2-3x+2和一次函数y=-2x+4,把函数y=t(x2-3x+2)+(1-t)(-2x+4)(t为常数)称为这两个函数的“衍生二次函数”.已知不论t取何常数,这个函数永远经过某些定点,则这个函数必经过的定点坐标为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-2x2+4x+6.
(1)求出该函数图象的顶点坐标,对称轴,图象与x轴、y轴的交点坐标,并在下面的坐标系中画出这个函数的大致图象;
(2)利用函数图象写出:当y>0时x的取值范围?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C′处;作∠BPC′的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

不论m取任何实数,抛物线y=a(x+m)2+m(a≠0)的顶点都(  )
A.在y=x直线上B.在直线y=-x上
C.在x轴上D.在y轴上

查看答案和解析>>

同步练习册答案