精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

【答案】
(1)证明:∵四边形ABDE是平行四边形(已知),

∴AB∥DE,AB=DE(平行四边形的对边平行且相等);

∴∠B=∠EDC(两直线平行,同位角相等);

又∵AB=AC(已知),

∴AC=DE(等量代换),∠B=∠ACB(等边对等角),

∴∠EDC=∠ACD(等量代换);

∵在△ADC和△ECD中,

∴△ADC≌△ECD(SAS);


(2)证明:∵四边形ABDE是平行四边形(已知),

∴BD∥AE,BD=AE(平行四边形的对边平行且相等),

∴AE∥CD;

又∵BD=CD,

∴AE=CD(等量代换),

∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);

在△ABC中,AB=AC,BD=CD,

∴AD⊥BC(等腰三角形的“三合一”性质),

∴∠ADC=90°,

ADCE是矩形.


【解析】(1)由平行四边形的性质易得对边平行且相等,又由等边对等角,可得两个三角形有两组对边相等且夹角相等,可判定两个三角形全等。
(2)由四边形ABDE是平行四边形易得四边形ADCE是平行四边形,在利用等腰三角形的性质“三线合一”可得∠ADC=90°,最终可得ADCE是矩形.
【考点精析】关于本题考查的矩形的判定方法,需要了解有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图像如图所示,则①abc;②b2-4ac;③2a+b;④a+b+c这四个式子中,值为负数的有个( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,

(1)画出△AB′C′;
(2)写出点B′,C′的坐标;
(3)求出在△ABC旋转的过程中,点C经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,且DE∥AB,过点EEF⊥DE,交BC的延长线于点F.

1)求∠F的度数;

2)若CD=2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AC+BC=24,AO,BO分别是角平分线,且MNBA,分别交AC于N,BC于M,则CMN的周长为(

A.12 B.24 C.36 D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上一点,∠AOD120,∠AOC90OE平分∠BOD,则图中互为补角的角有__________对。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的部分图像 ,在下列四个结论中正确的是
①不等式ax2+bx+c>0的解集是-1<x<5;②a-b+c>0;③b2-4ac>0;④4a+b<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索题:

根据前面的规律,回答下列问题:

1__________

2)当x4,

3)求:的值。(请写出解题过程);

4)求:的值的个位数字。(只写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)如图,AD△ABC的角平分线,DE⊥AC,垂足为EBF∥ACED的延长线于点F,若BC恰好平分∠ABFAE=2BF.给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF,其中正确的结论共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步练习册答案