精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,AB=AC,∠A=36°,
(1)用尺规作图的方法,过B点作∠ABC的平分线交AC于D(不写作法,保留作图痕迹);
(2)求证:BC=BD=AD;
(3)求证:AD2=AC•DC;
(4)设
CDDA
=x,求x.
分析:(1)根据角平分线的方法进行作图;
(2)根据三角形的内角和定理和等腰三角形的性质,得∠ABC=∠ACB=72°,再根据角平分线定义,得∠ABD=∠CBD=36°,根据三角形的外角的性质,得∠BDC=72°,最后根据等角对等边即可证明;
(3)在(2)的基础上,根据两角对应相等证明△BCD∽△ABC,再根据相似三角形的性质即可得到
BC
CD
=
AC
BC
,结合(2)的结论即可证明;
(4)结合(3)的结论和已知条件可以得到关于x的方程,从而求解.
解答:精英家教网(1)解:如图,

(2)证明:∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°.
又BD平分∠ABC,
∴∠ABD=∠CBD=36°.
∴∠BDC=72°.
∴BC=BD=AD.

(3)证明:∵∠ABC=∠C=∠BDC,
∴△BCD∽△ABC.
BC
CD
=
AC
BC

又BC=BD=AD,
∴AD2=AC•DC.

(4)解:∵AD2=AC•DC,
CD
DA
=x,AC=AD+CD,
∴AD2=(AD+CD)•CD,
AD2=(AD+x•AD)•x•AD,
x(1+x)=1,
x2+x-1=0,
x=
-1±
5
2
(负值舍去).
即x=
5
-1
2
点评:(1)注意:角平分线是一条射线;三角形的角平分线是一条线段.
(2)能够根据三角形的内角和定理、三角形的外角的性质以及等腰三角形的性质求得三角形的各角的度数,根据等角对等边即可证明;
(3)考查了相似三角形的判定和性质;
(4)掌握一元二次方程的解法,注意此图中,点D实际上是AC的一个黄金分割点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案