精英家教网 > 初中数学 > 题目详情
已知梯形AOCD在直角坐标系中的位置如图1所示,其中AD∥OC,AO⊥OC,且CD=5,若C点的坐标为C(5,0),tan∠DCO=
43

(1)求D点的坐标及过C、D、O三点的抛物线解析式;
(2)动点P在线段OA上自O点出发向A点运动,速度为每秒1个单位,同时动点Q自A点出发以相同的速度,沿折线A-D-C运动,当其中一点到达终点时另一点也立即停止运动.设△APQ的面积为S,求S与运动时间t的函数关系式,并写出相应的t的取值范围.
(3)当(2)中的S取最大值时,过Q作QE⊥x轴于E,此时,抛物线上是否存在点M,使S△OPM=S△QEM?若存在,求出M的坐标;若不存在,说明理由.
精英家教网
分析:(1)根据tan∠DCO=
4
3
,以及CD=5,得出DE=4,CE=3,再利用待定系数法求二次函数解析式即可.
(2)根据0<x≤2 时,以及2<x≤4时,分别得出即可;
(3)根据二次函数最值以及三角形面积求法得出即可.
解答:精英家教网解:(1)作DE⊥CO,
∵CD=5,C点的坐标为C(5,0),
tan∠DCO=
4
3

DE
EC
=
4
3

∴DE=4,CE=3,
∴AD=2,
∴D(2,4),
将O(0,0),D(2,4),C(5,0)代入解析式:
c=0
4a+2b+c=4
25a+5b+c=0

解得:
a=-
2
3
b=
10
3
c=0

∴y=-
2
3
x2+
10
3
x;

(2)0<x≤2 时,
S=
1
2
(4-t)t=-
1
2
t2+2t,
2<x≤4时,
S=-
3
10
( t-
4
3
2+
32
15
=-
3
10
t2+
4
5
t+
8
5


(3)∵t=2时,S最大=2,
当S△OPM=S△QEM,PO=2,DE=4,
∴PM=2AD=4,
∴M1(4,
8
3
),
同理可得 M2
4
3
88
27
).
点评:此题主要考查了待定系数法求二次函数解析式以及二次函数最值求法和三角形面积求法等知识,在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:△ABC在直角坐标系中,A(-4,4),B(-4,0),C(-2,0).
(1)将△ABC沿直线x=-1翻折得到△DEF,画出△DEF,并写出点D的坐标
 

(2)将△ABC绕原点O顺时针旋转90°得到△PMN,画出△PMN,并写出点P的坐标
 

(3)求△DEF与△PMN重叠部分的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A在直角坐标系中的坐标为(1,
3
)
,在x轴上找一点P,使得以点O,A,P为顶点的三角形是等腰三角形,则符合条件的点P有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知梯形AOCD在直角坐标系中的位置如图1所示,其中AD∥OC,AO⊥OC,且CD=5,若C点的坐标为C(5,0),tan∠DCO=数学公式
(1)求D点的坐标及过C、D、O三点的抛物线解析式;
(2)动点P在线段OA上自O点出发向A点运动,速度为每秒1个单位,同时动点Q自A点出发以相同的速度,沿折线A-D-C运动,当其中一点到达终点时另一点也立即停止运动.设△APQ的面积为S,求S与运动时间t的函数关系式,并写出相应的t的取值范围.
(3)当(2)中的S取最大值时,过Q作QE⊥x轴于E,此时,抛物线上是否存在点M,使S△OPM=S△QEM?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省泰州市泰兴市济川实验初中中考数学二模试卷(解析版) 题型:解答题

已知梯形AOCD在直角坐标系中的位置如图1所示,其中AD∥OC,AO⊥OC,且CD=5,若C点的坐标为C(5,0),tan∠DCO=
(1)求D点的坐标及过C、D、O三点的抛物线解析式;
(2)动点P在线段OA上自O点出发向A点运动,速度为每秒1个单位,同时动点Q自A点出发以相同的速度,沿折线A-D-C运动,当其中一点到达终点时另一点也立即停止运动.设△APQ的面积为S,求S与运动时间t的函数关系式,并写出相应的t的取值范围.
(3)当(2)中的S取最大值时,过Q作QE⊥x轴于E,此时,抛物线上是否存在点M,使S△OPM=S△QEM?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案