精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式:
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM周长最短?若不存在,请说明理由;若存在,求出点M的坐标.

【答案】
(1)

解:在y=3x﹣3中,令y=0可求得x=1,令x=0可得y=﹣3,

∴A(1,0),B(0,﹣3),

把A、B两点的坐标分别代入y=x2+bx+c得 ,解得

∴抛物线解析式为y=x2+2x﹣3


(2)

解:令y=0得0=x2+2x﹣3,解得x1=1,x2=﹣3

∴C(﹣3,0),AC=4

∴SABC= ACOB= ×4×3=6


(3)

解:∵y=x2+2x﹣3=(x+1)2﹣4,

∴抛物线的对称轴为x=﹣1,

∵A、C关于对称轴对称,

∴MA=MC,

∴MB+MA=MB+MC,

∴当B、M、C三点在同一条直线上时MB+MC最小,此时△ABM的周长最小,

∴连接BC交对称轴于点M,则M即为满足条件的点,

设直线BC的解析式为y=kx+m,

∵直线BC过点B(0,﹣3),C(﹣3,0),

,解得

∴直线BC的解析式y=﹣x﹣3,

当x=﹣1时,y=﹣2,

∴M(﹣1,﹣2),

∴存在点M使△ABM周长最短,其坐标为(﹣1,﹣2)


【解析】(1)由直线解析式可求得A、B两点的坐标,根据待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得C点坐标,再根据三角形的面积可求得答案;(3)连接BC交对称轴于点M,由题意可知A、C关于对称轴对称,则可知MA=MC,故当B、M、C三点在同一条直线上时MA+MB最小,则△ABM的周长最小,由B、C坐标可求得直线BC的解析式,则可求得M点的坐标.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=9m和b=12m,现要将此绿地扩充改造为等腰三角形,且扩充部分包含以b=12m为直角边的直角三角形,则扩充后等腰三角形的周长为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学上学期的数学历次测验成绩如下表所示:

测验类别

平时测验

期中测验

期末测验

1

2

3

成绩

100

106

106

105

110

(1)该同学上学期5次测验成绩的众数为 ,中位数为

(2)该同学上学期数学平时成绩的平均数为

(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F分别是菱形ABCD的边AB,AD的中点,且AB=5,AC=6.

(1)求对角线BD的长;

(2)求证:四边形AEOF为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知△ABC的三个顶点的坐标分别为A﹣23),B﹣60),C﹣10).

1)请直接写出点B关于点A对称的点的坐标;

2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;

3)请直接写出:以ABC为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△APB与△CDP均为等边三角形,且PAPDPAPD.有下列三个结论:①∠PBC=15°;ADBC③直线PCAB垂直.其中正确的有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有 A、B 两点,所表示的有理数分别为 ab,已知 AB=12,原点 O 是线段AB 上的一点,且 OA=2OB.

1ab

2若动点 PQ 分别从 AB 同时出发,向右运动,点 P 的速度为每秒 2 个单位长度,点 Q 的速度为每秒 1 个单位长度,设运动时间为 t 秒,当点 P 与点 Q 重合时,PQ 两点停止运动.

①当 t 为何值时,2OPOQ=4

②当点 P 到达点 O 时,动点 M 从点 O 出发,以每秒 3 个单位长度的速度也向右运动,当点 M 追上点 Q 后立即返回,以同样的速度向点 P 运动,遇到点 P 后再立即返回,以同样的速度向点 Q 运动,如此往返,直到点 PQ 停止时,点 M 也停止运动,求在此过程中点 M 行驶的总路程,并直接写出点 M 最后位置在数轴上所对应的有理数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,DBC上任意一点,过点D分别向AB、AC引垂线,垂足分别为点E、F.

(1)如图①,当点DBC的什么位置时,DE=DF?并证明;

(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?请写出所有的全等三角形(不必证明);

(3)如图②,过点CAB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=kx和双曲线在第一象限相交于点A(1,2),点B在y轴上,且AB⊥y轴.有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t>0),过点P作PD⊥y轴,交直线OA于点C,交双曲线于点D.

(1)求直线y=kx和双曲线的函数关系式;

(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;

(3)在图中第一象限的双曲线上是否存在点Q,使以A、B、C、Q四点为顶点的四边形是平行四边形?若存在,请求出此时t的值和Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案