精英家教网 > 初中数学 > 题目详情

(满分l4分)已知:抛物线y=x2-(a+2)x+9的顶点在坐标轴上.
(1)求a的值;
(2)若该抛物线的顶点C在x轴的正半轴上,而此抛物线与直线Y=x+9交于A,B两点,且A点在B点左侧,P为线段AB上的点(A,B两端点除外).过点P作x轴的垂线与抛物线交于点Q(可在图中画示意图).问:

①线段AB上是否存在这样的点P,使得PQ的长等于6?若存在,请求出点P的坐标;若不存在,请说明理由.
②线段AB上是否存在这样的点P,使得△ABQ∽△OAC?若存在,请求出此时点Q的坐标;若不存在,请说明理由.

(1)解:若抛物线y=x2-(a+2)x+9的顶点在y轴上,得a=2;       ……2分
若抛物线y=x2 –(a+2)x+9的顶点在x轴上,由△=0,得a=4或a=-8. ……4分
(2)根据题意得a=4,此时抛物线为y= x2—6x+9.                    ……5分
y=x+9.
解   
y=x2-6x+9
      x1=0,        x2=7
得   
y1=9,        y2=16.
所以A(0,9),B(7,16).                                            ……7分
①由于点P在直线y=x+9上,因此设符合题意的点P的坐标为(t,t+9),此时对应的点Q的坐标为(t,t2-6t+9),                                              ……9分
由题意得PQ=(t+9)-(t2-6t+9)=6,
解得t-l或6.                                                      ……11分
由题意0<t<7,点P的坐标为(1,10)或(6,15).                        ……12分
②设在线段AB上存在这样的点P,使得△ABQ∽△0AC,
∵∠BAQ=∠AOC=90°,分别过B,Q两点向Y轴作垂线,垂足为E,H,
由∠BAQ=90°,注意到直线y=x+9与x轴所夹的锐角为45°,
由QH=AH可求得点Q的坐标为(5,4),但显然AB:AQ≠OA:OC,
∴△ABQ与△OAC不可能相似,                                        ……l3分
∴线段AB上不存在符合条件的点P.                                    ……14分

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(满分l4分)已知:抛物线y=x2-(a+2)x+9的顶点在坐标轴上.
(1)求a的值;
(2)若该抛物线的顶点C在x轴的正半轴上,而此抛物线与直线Y=x+9交于A,B两点,且A点在B点左侧,P为线段AB上的点(A,B两端点除外).过点P作x轴的垂线与抛物线交于点Q(可在图中画示意图).问:

①线段AB上是否存在这样的点P,使得PQ的长等于6?若存在,请求出点P的坐标;若不存在,请说明理由.
②线段AB上是否存在这样的点P,使得△ABQ∽△OAC?若存在,请求出此时点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(满分l4分)如图已知直线l1:y=x+与直线l2:y=2x+16相交于点C,l1,l2分别交x轴于A,B两点.矩形DEFG的顶点D,E分别在直线l1,l2上,顶点F,G都在X轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若此时矩形DEFG,沿x轴的反方向以每秒l个单位长度的速度平移,设移动时间为t 5(0≤t≤12),矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(满分l4分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0),C(8,0),D(8,8).抛物线y=ax2+bx过A,C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,过点E作EF上AD交AD于点F,交抛物线于点G.当t为何值时,线段EG最长?

查看答案和解析>>

科目:初中数学 来源:2010年浙江省初中毕业生学业考试模拟试卷数学卷 题型:解答题

(满分l4分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0),C(8,0),D(8,8).抛物线y=ax2+bx过A,C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,过点E作EF上AD交AD于点F,交抛物线于点G.当t为何值时,线段EG最长?

查看答案和解析>>

同步练习册答案