【题目】如图,抛物线y=x2+bx+c与直线y=x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.
(1)求抛物线对应的函数解析式;
(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.
【答案】(1) y=x2+x﹣3;(2)见解析.
【解析】
(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PD=|m+4m|,∵PD∥AO,则当PD=OA=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m+4m|=3,即可求解.
解:(1)将点A、B的坐标代入抛物线表达式得:,解得:,
故抛物线的表达式为:y=x2+x﹣3;
(2)存在,理由:
同理直线AB的表达式为:y=x﹣3,
设点P(m,m2+m﹣3),点D(m, m﹣3)(m<0),则PD=|m2+4m|,
∵PD∥AO,则当PD=OA=3时,存在以O,A,P,D为顶点的平行四边形,
即PD=|m2+4m|=3,
①当m2+4m=3时,
解得:m=﹣2±(舍去正值),
即m2+m﹣3=1﹣,故点P(﹣2﹣,﹣1﹣),
②当m2+4m=﹣3时,解得:m=﹣1或﹣3,
同理可得:点P(﹣1,﹣)或(﹣3,﹣);
综上,点P(﹣2﹣,﹣1﹣)或(﹣1,﹣)或(﹣3,﹣).
科目:初中数学 来源: 题型:
【题目】在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.
(1)小明随机选的这个答案,答对的概率是 ;
(2)通过画树状图或列表法求小亮两题都答对概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围;
(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90,旋转后角的两边分别与射线BC交于点F和点G.
(1)探究线段BE、BF和DB之间的数量关系,写出结论并给出证明;
(2)当四边形ABCD为菱形,∠ADC=60,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120,旋转后角的两边分别与射线BC交于点F和点G.
①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M.若BE=1,AB=2,直接写出线段GM的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市教育行政部门为了解初三学生每学期参加综合实践活动的情况,随机抽样调查了某校初三学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:
(1)该校初三学生总数为 人;
(2)分别求出活动时间为5天、7天的学生人数为 、 ,并补全频数分布直方图;
(3)扇形统计图中“活动时间为5天”的扇形所对圆心角的度数是 ;
(4)在这次抽样调查中,众数和中位数分别是 、 ;
(5)如果该市共有初三学生96000人,请你估计“活动时间不少于5天”的大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+b和反比例函数y=(k≠0)交于点A(4,1).
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,,D、E分别是边AB、BC上的动点,且,连结AD、AE,点M、N、P分别是CD、AE、AC的中点,设.
(1)观察猜想
①在求的值时,小明运用从特殊到一般的方法,先令,解题思路如下:
如图1,先由,得到,再由中位线的性质得到,
,进而得出△PMN为等边三角形,∴.
②如图2,当,仿照小明的思路求的值;
(2)探究证明
如图3,试猜想的值是否与的度数有关,若有关,请用含的式子表示出,若无关,请说明理由;
(3)拓展应用
如图4,,点D、E分别是射线AB、CB上的动点,且,点M、N、P分别是线段CD、AE、AC的中点,当时,请直接写出MN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com