A. | 18 | B. | $\sqrt{61}$ | C. | 2$\sqrt{61}$ | D. | 12 |
分析 延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即:△ABD为直角三角形,利用勾股定理的求出BD的长,进而求出BC的长.
解答 证明:延长AD到点E,使DE=AD=6,连接CE,
∵AD是BC边上的中线,
∴BD=CD,
在△ABD和△CED中,
$\left\{\begin{array}{l}{BC=CD}\\{∠ADB=∠CDE}\\{AD=DE}\end{array}\right.$,
∴△ABD≌△CED(SAS),
∴CE=AB=5,∠BAD=∠E,
∵AE=2AD=12,CE=5,AC=13,
∴CE2+AE2=AC2,
∴∠CED=90°,
∴∠BAD=90°,
∴BD2=AB2+AD2,
∴BD=$\sqrt{{5}^{2}+{6}^{2}}$=$\sqrt{61}$,
∴BC=2BD=2$\sqrt{61}$,
故选C.
点评 本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形,题目的设计很新颖,是一道不错的中考题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 296瓶 | B. | 298瓶 | C. | 300瓶 | D. | 302瓶 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com