精英家教网 > 初中数学 > 题目详情
14. 为了了解某市九年级学生的体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计,得到统计图、表如图.
分数段ABCDE合计
频数/人123684b48c
频率0.05a0.350.250.201
根据上面的信息,回答下列问题:
(1)统计表中,a=0.15,b=60,c=240;将频数分布直方图补充完整.
(2)小明说:“这组数据的众数一定在C中.”你认为小明的说法正确吗?错误(选填“正确”或“错误”).
(3)若成绩在27分及以上定为优秀,则该市30000名九年级学生中体育成绩为优秀的学生人数约有多少?

分析 (1)首先用12÷0.05即可得到抽取的部分学生的总人数,然后用36除以总人数得到a,用总人数乘以0.25即可求出b;根据表格的信息就可以补全频数分布直方图;
(2)根据众数的定义和表格信息就可以得到这组数据的“众数”落在哪一组,进而判断小明的说法是否正确;
(3)利用30000乘以抽查的人数中优秀的学生人数所占的频率即可

解答 解:(1)∵抽取的部分学生的总人数为c=12÷0.05=240(人),
∴a=36÷240=0.15,b=240×0.25=60;
统计图补充如下:

故答案是:0.15;60;240;

(2)C组数据范围是24.5~26.5,由于成绩均为整数,所以C组的成绩为25分与26分,虽然C组人数最多,但是25分与26分的人数不一定最多,所以这组数据的众数不一定在C中.故小明的说法错误;
故答案是:错误;

(3)30000×(0.25+0.20)=13500(人).
即该市今年30000名九年级学生中体育成绩为优秀的学生人数约有13500人.

点评 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.同时考查了众数的定义及用样本估计总体的思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图所示,已知∠AOE=100°,∠DOF=80°,OE平分∠DOC,OF平分∠AOC,∠EOF=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列等式由左边到右边的变化,属于因式分解的是(  )
A.x2+5x-1=x(x+5)-1B.x2+3x-4=x(x+3-$\frac{4}{x}$)C.x2-9=(x+3)(x-3)D.(x+2)(x-2)=(x-2)(x+2)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2$\sqrt{3}$,DE=2,则四边形OCED的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某袋子装有一枚$10硬币、两枚$5硬币及一枚$2硬币,从该袋子中同时随机抽出两枚硬币.
(a)完成表,以展示抽出的两枚硬币的总金额的所有可能结果.
(b)求抽出的两枚硬币的总金额多于$7的概率.
 总金额($)$10$5 $5 $2
$10201515 12 
$515 1010
$5151010
$2127

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展.请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若将点A(2,3)向左平移3个单位,再向下平移4个单位,得到点B,则点B的坐标为(  )
A.(5,-1)B.(-1,-1)C.(5,7)D.(-1,7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.阅读下列材料:
小明同学遇到下列问题:
解方程组$\left\{{\begin{array}{l}{\frac{2x+3y}{4}+\frac{2x-3y}{3}=7}\\{\frac{2x+3y}{3}+\frac{2x-3y}{2}=8}\end{array}}\right.$,他发现如果直接用代入消元法或加减消元法求解,运算量比较大,也容易出错.如果把方程组中的(2x+3y)看作一个数,把(2x-3y)看作一个数,通过换元,可以解决问题.以下是他的解题过程:
令m=2x+3y,n=2x-3y.
这时原方程组化为$\left\{\begin{array}{l}\frac{m}{4}+\frac{n}{3}=7\\ \frac{m}{3}+\frac{n}{2}=8.\end{array}\right.$解得$\left\{{\begin{array}{l}{m=60}\\{n=-24}\end{array}}\right.$
把$\left\{{\begin{array}{l}{m=60}\\{n=-24}\end{array}}\right.$代入m=2x+3y,n=2x-3y.
得$\left\{{\begin{array}{l}{2x+3y=60}\\{2x-3y=-24}\end{array}}\right.$解得 $\left\{{\begin{array}{l}{x=9}\\{y=14}\end{array}}\right.$
所以,原方程组的解为$\left\{{\begin{array}{l}{x=9}\\{y=14}\end{array}}\right.$
请你参考小明同学的做法,解决下面的问题:
(1)解方程组$\left\{\begin{array}{l}\frac{x+y}{6}+\frac{x-y}{10}=3\\ \frac{x+y}{6}-\frac{x-y}{10}=-1.\end{array}\right.$
(2)若方程组$\left\{\begin{array}{l}{a_1}x+{b_1}y={c_{1,}}\\{a_2}x+{b_2}y={c_{2.}}\end{array}\right.$的解是$\left\{\begin{array}{l}x=3\\ y=2.\end{array}\right.$,求方程组$\left\{\begin{array}{l}\frac{5}{6}{a_1}x+\frac{1}{3}{b_1}y={c_{1,}}\\ \frac{5}{6}{a_2}x+\frac{1}{3}{b_2}y={c_2}.\end{array}\right.$的解.

查看答案和解析>>

同步练习册答案