16£®ÒÑÖªËıßÐÎABCDµÄÃæ»ýΪ1£¬OΪËıßÐÎABCDÄÚµÄÒ»µã£®
£¨1£©Èçͼ1£¬·Ö±ð×÷Oµã¹ØÓÚµãA¡¢B¡¢C¡¢DµÄ¶Ô³Æµã£¬¶ÔÓ¦µãΪA¡ä¡¢B¡ä¡¢C¡ä¡¢D¡ä£¬ÔòËıßÐÎA¡äB¡äC¡äD¡äµÄÃæ»ýΪ4£»
£¨2£©Èçͼ2£¬E¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßµÄÖе㣬·Ö±ð×÷Oµã¹ØÓÚµãE¡¢F¡¢G¡¢HµÄ¶Ô³Æµã£¬¶ÔÓ¦µãΪE¡ä¡¢F¡ä¡¢G¡ä¡¢H¡ä£¬ÔòËıßÐÎEFGHµÄÃæ»ýΪ$\frac{1}{2}$£»ËıßÐÎE¡äF¡äG¡äH¡äµÄÃæ»ýΪ2£®
£¨3£©Èçͼ3£¬ÈôE¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßÉϵĵ㣬ÇÒ$\frac{AE}{AB}$=$\frac{BF}{BC}$=$\frac{CG}{CD}$=$\frac{DH}{DA}$=$\frac{1}{x}$£®ÇëÔÚͼ3Öзֱð×÷Oµã¹ØÓÚµãE¡¢F¡¢G¡¢HµÄ¶Ô³Æµã£¨±£Áô»­Í¼ºÛ¼££©£¬¶ÔÓ¦µãE¡äF¡äG¡äH¡ä£¬ÔòÓú¬xµÄ´úÊýʽ±íʾËıßÐÎE¡äF¡äG¡äH¡äµÄÃæ»ýΪ$\frac{4{x}^{2}-8x+8}{{x}^{2}}$£®

·ÖÎö £¨1£©¸ù¾ÝÈý½ÇÐÎÖÐλÏ߶¨Àí£¬¿ÉµÃ$\frac{AB}{A'B'}$=$\frac{1}{2}$£¬ÔÙ¸ù¾ÝËıßÐÎABCDÓëËıßÐÎA'B'C'D'ÊÇλËÆͼÐΣ¬ÇÒλËƱÈΪ$\frac{1}{2}$£¬¼´¿ÉµÃµ½SËıßÐÎA¡äB¡äC¡äD¡ä=1¡Á4=4£»
£¨2£©Á¬½ÓBD£¬BH£¬¸ù¾ÝE¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßµÄÖе㣬¿ÉµÃS¡÷AEH=$\frac{1}{2}$S¡÷ABH=$\frac{1}{2}$¡Á$\frac{1}{2}$S¡÷ABD=$\frac{1}{4}$S¡÷ABD £¬S¡÷CFG=$\frac{1}{4}$S¡÷CBD £¬S¡÷DHG+S¡÷BEF=$\frac{1}{4}$SËıßÐÎABCD £¬½ø¶øµÃµ½SËıßÐÎEFGH=£¨1-$\frac{1}{4}$¡Á2£©SËıßÐÎABCD=$\frac{1}{2}$¡Á1=$\frac{1}{2}$£¬ÔÙ¸ù¾Ý£¨1£©ÖнáÂÛ¿ÉÖª£¬SËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH=4¡Á$\frac{1}{2}$=2£»
£¨3£©ÔËÓã¨2£©Öеķ½·¨£¬ÏÈÇóµÃSËıßÐÎEFGH=$\frac{{x}^{2}-2x+2}{{x}^{2}}$£¬ÔÙ¸ù¾ÝSËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH½øÐмÆËã¼´¿É£®

½â´ð ½â£º£¨1£©¸ù¾Ý¶Ô³ÆÐԿɵ㬵ãAÊÇOA'µÄÖе㣬µãBʱOB'µÄÖе㣬
¡àABÊÇ¡÷A'B'OµÄÖÐλÏߣ¬
¡à$\frac{AB}{A'B'}$=$\frac{1}{2}$£¬
ÓÉÌâ¿ÉµÃ£¬ËıßÐÎABCDÓëËıßÐÎA'B'C'D'ÊÇλËÆͼÐΣ¬ÇÒλËƱÈΪ$\frac{1}{2}$£¬
¡àËıßÐÎA¡äB¡äC¡äD¡äµÄÃæ»ýµÈÓÚËıßÐÎABCDµÄÃæ»ýµÄ4±¶£¬
¡àSËıßÐÎA¡äB¡äC¡äD¡ä=1¡Á4=4£¬
¹Ê´ð°¸Îª£º4£»

£¨2£©Èçͼ2£¬Á¬½ÓBD£¬BH£¬
¡ßE¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢BC¡¢CD¡¢DA±ßµÄÖе㣬
¡àS¡÷AEH=$\frac{1}{2}$S¡÷ABH=$\frac{1}{2}$¡Á$\frac{1}{2}$S¡÷ABD=$\frac{1}{4}$S¡÷ABD £¬
ͬÀí£¬S¡÷CFG=$\frac{1}{4}$S¡÷CBD £¬
¡àS¡÷AEH+S¡÷CFG=$\frac{1}{4}$£¨S¡÷ABD+S¡÷CBD£©=$\frac{1}{4}$SËıßÐÎABCD £¬
ͬÀí¿ÉµÃ£¬S¡÷DHG+S¡÷BEF=$\frac{1}{4}$SËıßÐÎABCD £¬
¡àSËıßÐÎEFGH=£¨1-$\frac{1}{4}$¡Á2£©SËıßÐÎABCD=$\frac{1}{2}$¡Á1=$\frac{1}{2}$£¬
ÓÉ£¨1£©¿ÉÖª£¬SËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH=4¡Á$\frac{1}{2}$=2£¬
¹Ê´ð°¸Îª£º$\frac{1}{2}$£¬2£»

£¨3£©Èçͼ3£¬µãE¡ä£¬F¡ä£¬G¡ä£¬H¡ä¼´ÎªËùÇó£¬
Èçͼ4£¬Á¬½ÓEF£¬FG£¬GH£¬HE£¬Á¬½ÓBD£¬BH£¬
¡ß$\frac{AE}{AB}$=$\frac{BF}{BC}$=$\frac{CG}{CD}$=$\frac{DH}{DA}$=$\frac{1}{x}$£¬
¡àS¡÷AEH=$\frac{1}{x}$S¡÷ABH=$\frac{1}{x}$¡Á$\frac{x-1}{x}$S¡÷ABD=$\frac{x-1}{{x}^{2}}$S¡÷ABD £¬
ͬÀí£¬S¡÷CFG=$\frac{x-1}{{x}^{2}}$S¡÷CBD £¬
¡àS¡÷AEH+S¡÷CFG=$\frac{x-1}{{x}^{2}}$£¨S¡÷ABD+S¡÷CBD£©=$\frac{x-1}{{x}^{2}}$SËıßÐÎABCD £¬
ͬÀí¿ÉµÃ£¬S¡÷DHG+S¡÷BEF=$\frac{x-1}{{x}^{2}}$SËıßÐÎABCD £¬
¡àSËıßÐÎEFGH=£¨1-$\frac{x-1}{{x}^{2}}$¡Á2£©SËıßÐÎABCD=$\frac{{x}^{2}-2x+2}{{x}^{2}}$¡Á1=$\frac{{x}^{2}-2x+2}{{x}^{2}}$£¬
ÓÉ£¨1£©¿ÉÖª£¬SËıßÐÎE¡äF¡äG¡äH¡ä=4SËıßÐÎEFGH=4¡Á$\frac{{x}^{2}-2x+2}{{x}^{2}}$=$\frac{4{x}^{2}-8x+8}{{x}^{2}}$£¬
¹Ê´ð°¸Îª£º$\frac{4{x}^{2}-8x+8}{{x}^{2}}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖеãËıßÐÎÒÔ¼°Î»ËÆͼÐεÄÐÔÖʵÄÔËÓ㬽â¾öÎÊÌâµÄ¹Ø¼üÊǽ«Í¼ÐνøÐзָÀûÓõȵ׵ȸߵÄÈý½ÇÐεÄÃæ»ý±È¾ÍµÈÓÚ¶ÔÓ¦µ×µÄ±È½øÐмÆË㣮½âÌâʱעÒ⣺ÏàËƶà±ßÐεÄÃæ»ýÖ®±ÈµÈÓÚÏàËƱȵÄƽ·½£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®$\frac{2}{5}£º{0}£®{6}$»¯Îª×î¼òÕûÊý±ÈÊÇ£¨¡¡¡¡£©
A£®2£º3B£®8£º5C£®10£º1D£®5£º8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬½«¡÷ABCÈƵãC˳ʱÕëÐýתºóµÃµ½¡÷A'B'C£¬Éè¡ÏA'CB=a£¬µãB'ÔÚABÉÏ£¬Ôò¡ÏADA'=4¦Á-360¡ã£¨Óú¬aµÄʽ×Ó±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬µãAµÄ×ø±êΪ£¨0£¬4$\sqrt{2}$£©£®µãCµÄ×ø±êΪ£¨-1£¬0£©£¬ÈôPΪÏ߶ÎOAÉÏÒ»¶¯µã£®ÔòCP+$\frac{1}{3}$AP×îСֵÊÇ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ð¡ÅôÓöµ½ÕâÑùÒ»¸öÎÊÌ⣬ÒÑ֪ʵÊýa¡¢b£¨a£¾0£¬b£¾0£©£¬ÇëÎÊ$\frac{a+b}{2}$-$\sqrt{ab}$ÊÇ·ñÓÐ×îСֵ£¬Èç¹ûÓÐÇëд³ö×îСֵ²¢ËµÃ÷ÀíÓÉ£®
ËûÕÒ²»µ½Ë¼Â·£¬¿ªÊ¼·­Ôıʼǣ¬·¢ÏÖ´ËÌâ¿ÉÒÔÓÃÒÔÇ°ÀÏʦ½²µÄ¡°Åä·½¡±À´½â¾ö
±Ê¼ÇÖÐдµ½£ºÇóx2+6x+9µÄ×îСֵ
²½ÖèÈçÏ£ºx2+6x+9=x2+6x+32=£¨x+3£©2
¡ßÎÞÂÛxÈ¡ÈÎÒâʵÊý£¬£¨x+3£©2¡Ý0
¡àx2+6x+9µÄ×îСֵÊÇ0
£¨1£©Ð¡Åô·¢ÏÖ´úÊýʽa2-2$\sqrt{3}$a+3¿ÉÒÔÓÃÉÏÃæµÄ·½·¨ÕÒµ½×îСֵ£¬ÇëÎÊ×îСֵÊǶàÉÙ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Ð¡Åôͨ¹ý±Ê¼ÇºÍÎÊÌ⣨1£©µÄ·½°¸ºÜ¿ì½â¾öÁËÉÏÃæµÄÎÊÌ⣬ÇëÄãÍê³É½â´ð¹ý³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚƽÂöÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãA£¨2-a£¬2a+3£©ÔÚµÚËÄÏóÏÞ£®
£¨1£©ÈôµãAµ½xÖáµÄ¾àÀëÓëµ½yÖáµÄ¾àÀëÏàµÈ£¬ÇóaµÄÖµ£»
£¨2£©ÈôµãAµ½xÖáµÄ¾àÀëСÓÚµ½yÖáµÄ¾àÀ룬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Õý±ÈÀýº¯Êýy=2xÓë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£©ÏཻÓÚA¡¢BÁ½µã£¬ÒÑÖªµãAµÄ×ø±êÊÇ£¨1£¬a£©£¬ÁíÓÐÒ»´Îº¯Êýy=mx+n£¨m¡Ù0£©µÄͼÏó¾­¹ýµãA£¬½»xÖáÓÚµãC£¬½»yÖáÓÚµãD£¬OC=$\sqrt{5}$OA£®
£¨1£©Çó¸Ã·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Á¬½ÓBD£¬Çó¡÷ABDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁÐʽ×ÓÒ»¶¨ÊǶþ´Î¸ùʽµÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{-x-2}$B£®$\sqrt{x}$C£®$\sqrt{{x}^{2}+2}$D£®$\sqrt{-5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁз½³ÌÖУ¬ÊÇÒ»Ôª¶þ´Î·½³ÌµÄÊÇ£¨¡¡¡¡£©
A£®2x+1=0B£®y2+x=0C£®x2-x=0D£®$\frac{1}{x}$+x2=0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸