精英家教网 > 初中数学 > 题目详情

【题目】已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=m°,则∠BOE=________,∠BOE与∠COF的数量关系式为________;

(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否成立?请说明理由.

【答案】(1)68°,2m°,∠BOE=2∠COF;(2)成立,理由见解析.

【解析】(1)由∠COF=34°,∠COE是直角,易求∠EOF,而OE平分∠AOE,可求∠AOE,进而可求∠BOE,若∠COF=m°,则∠BOE=2m°;进而可知∠BOE=2∠COF;
(2)由于∠COE是直角,于是∠EOF=90°-∠COF,而OF平分∠AOE,则有∠AOE=2∠EOF,从而可得∠BOE=180°-∠AOE=180°-2(90°-∠COF)=2∠COF.

解:(1)∵∠COF=34°,∠COE是直角,
∴∠EOF=90°-34°=56°,
又∵OF平分∠AOE,
∴∠AOE=2∠EOF=112°,
∴∠BOE=180°-112°=68°,
若∠COF=m°,则∠BOE=2m°;
故∠BOE=2∠COF;
故答案是68°;2m°;∠BOE=2∠COF;
(2)∠BOE和∠COF的关系依然成立.
∵∠COE是直角,
∴∠EOF=90°-∠COF,
又∵OF平分∠AOE,
∴∠AOE=2∠EOF,
∴∠BOE=180°-∠AOE=180°-2(90°-∠COF)=2∠COF.

“点睛”本题考查了角的计算.解题的关键是注意找出所求角与已知角之间的关系,例如:互余、互补关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列条件中,不能确定两个三角形全等的条件是(
A.三条边对应相等
B.两角和其中一角的对边对应相等
C.两角和它们的夹边对应相等
D.两边和一角对应相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.

(1)求抛物线的解析式;

(2)证明:△DBO∽△EBC;

(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个多边形内角和是1080°,则这个多边形是( )
A.五边形
B.六边形
C.七边形
D.八边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=(  )
A.±1
B.1
C.-1
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCDAB=9,AD=4. ECD边上一点,CE=6.

(1)求AE的长.

(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE. 设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( )
A.10°
B.20°
C.40°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察探索:

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

x1)(x4+x3+x2+x+1)=x51

根据规律填空:(x1)(xn+xn1+…+x+1)=__.(n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列等式成立的是

A. -23=(-2)3 B. -32=(-3)2 C. -3×23=-32×2 D. -32=-23

查看答案和解析>>

同步练习册答案