精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD为正方形,DEAC,AE=AC,AE与CD相交于F.
求证:CE=CF.
证明:如图所示,顺时针旋转△ADE90°得到△ABG,连接CG.
∵∠ABG=∠ADE=90°+45°=135°,
∴B,G,D在一条直线上,
∴∠ABG=∠CBG=180°-45°=135°,
在△AGB与△CGB中,
AB=BC
∠ABG=∠CBG
BG=BG

∴△AGB≌△CGB(SAS),
∴AG=AC=GC=AE,
∴△AGC为等边三角形,
∵AC⊥BD(正方形的对角线互相垂直),
∴∠AGB=30°,
∴∠EAC=30°,
∵AE=AC,
∴∠AEC=∠ACE=
180°-30°
2
=75°,
又∵∠EFC=∠DFA=45°+30°=75°,
∴CE=CF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在边长为4的正方形ABCD中,以点B为圆心,BA为半径作弧
AC
,F为
AC
上的一动点,过点F作⊙B的切线交AD于点P,交DC于点Q.
(1)求证△DPQ的周长等于正方形ABCD的周长的一半;
(2)分别延长PQ、BC,延长线相交于点M,设AP长为x,BM长为y,试求出y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知正方形ABCD的边长为12,E,F分别是AD,CD上的点,且EF=10,∠EBF=45°,则AE的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD中,E为AB上一点,F为CB延长线上一点,且∠EFB=45°.
(1)求证:AF=CE;
(2)你认为AF与CE有怎样的位置关系?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当点坐标为A(4,0)时,求点D的坐标;
(2)求证:OP平分∠AOB;
(3)直接写出OP长的取值范围(不要证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,ADBC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.
(1)求证:四边形EFGH为正方形;
(2)若AD=1,BC=3,求正方形EFGH的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

?ABCD中,O是对角线的交点,不能判定这个平行四边形是正方形的是(  )
A.∠BAD=90°,AB=ADB.∠BAD=90°,AC⊥BD
C.AC⊥BD,AC=BDD.AB=AC,∠BAD=∠BCD

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=3
2
,则MN的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中正确的是(  )
A.两个能够互相重合的图形一定成中心对称
B.成中心对称的两个图形一定能够互相重合
C.把一个图形绕着某一点旋转一定的角度,如果它能够与另一个图形重合,那么这两个图形一定成中心对称
D.如果两个图形的对应点连线都经过某一点,那么这两个图形关于这一点成中心对称

查看答案和解析>>

同步练习册答案