精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c中,4a-b=0,a-b+c>0,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2,则下列判断错误的是( )
A.abc<0
B.c>0
C.4a>c
D.a+b+c>0
【答案】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:∵4a-b=0,∴抛物线的对称轴为x==-2
∵a-b+c>0,
∴当x=-1时,y>0,
∵抛物线与x轴有两个不同的交点且这两个交点之间的距离小于2,
∴抛物线与x轴的两个交点的横坐标位于-3与-1之间,b2-4ac>0
∴16a2-4ac=4a(4a-c)>0
据条件得图象:
∴a>0,b>0,c>0,
∴abc>0,4a-c>0,
∴4a>c
当x=1时,y=a+b+c>0
故选A.
点评:此题考查了二次函数各系数与函数图象的关系,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案