【题目】如图是某商品标牌的示意图,⊙O与等边△ABC的边BC相切于点C,且⊙O的直径与△ABC的高相等,已知等边△ABC边长为4,设⊙O与AC相交于点E,则AE的长为( )
A.B.1C.﹣1D.
【答案】B
【解析】
通过求解CE的长度来求出AE的长,连接OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出⊙O的直径,进而得到半径OC的长度;根据切线和等边三角形的性质不难的得出∠OCF=30°,再在Rt△OFC中,利用特殊角的三角函数值求出FC的长,最后利用垂径定理即可得出CE的长.
连接OC,并过点O作OF⊥CE于F.
∵△ABC为等边三角形,边长为4,
∴∠ACB=60°,△ABC的高为2.
∵等边三角形ABC的高与⊙O的直径相等,
∴⊙O的半径OC=.
∵⊙O与BC相切于点C,
∴∠OCB=90°.
∵∠ACB=60°,
∴∠OCF=30°.
∵在Rt△OFC中,∠OCF=30°,OC=,
∴FC=,
∴CE=2FC=3(cm)
∴AE=AC-CE=4-3=1(cm)
故选B.
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.
(1)求证:BE=BF;
(2)试说明DG与AF的位置关系和数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB· DA.延长AE至F,使AE=EF,设BF=10,cos∠BED=.
(1)求证:△DEB∽△DAE;
(2)求DA,DE的长;
(3)若点F在B、E、M三点确定的圆上,求MD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.
(1)求二次函数的表达式;
(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB上,求此时点D的坐标;
(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市智慧阅读活动正如火如茶地进行.某班学习委员为了解11月份全班同学课外阅读的情况,调查了全班同学11月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:
(1)扇形统计图中“3册”部分所对应的圆心角的度数是 ,并把条形统计图补充完整;
(2)该班的学习委员11月份的读书册数为4册,若该班的班主任从11月份读书4册的学生中随机抽取两名同学参加学校举行的知识竞赛,请用列表法或画树状图求恰好有一名同学是学习委员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)
(1)如图1,若点C是AB的中点,则∠AED= ;
(2)如图2,若点C不是AB的中点
①求证:△DEF为等边三角形;
②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60km/h(即m/s),交通管理部门在离该公路100m处设置了一速度检测点A,在如图所示的坐标系中,A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在点A的北偏东45°方向上.
(1)在图中直接标出表示60°和45°的角;
(2)写出点B、点C坐标;
(3)一辆汽车从点B匀速行驶到点C所用时间为15s.请你通过计算,判断该汽车在这段限速路上是否超速?(本小问中取1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=,AE=1.将正方形AEFG绕点A逆时针旋转,设BE的延长线交直线DG于点P,当点P,G第一次重合时停止旋转.在这个过程中:
(1)∠BPD=______度;
(2)点P所经过的路径长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com