精英家教网 > 初中数学 > 题目详情
1.如图,在平面直角坐标系中,点O为坐标原点,在四边形OABC中,点A在y轴上,AB∥OC,点B的坐标为(6,6),点C的坐标为(9,0).
(1)求直线BC的解析式;
(2)现有一动点P从点A出发,以每秒1个单位的速度沿射线AB运动(点P不与点B重合),过P作PH⊥x轴,垂足为H,直线HP交直线BC于点Q,设PQ的长度为d,点P的运动时间为t秒,求d与t之间的函数关系式,并直接写出相应的自变量t的取值范围;
(3)在(2)问的条件下,在y轴和直线BC上分别找一点M和N,当四边形PQMN为菱形时,求点M的坐标.

分析 (1)用待定系数法直接求出直线解析式;
(2)先根据点P的坐标表示出点Q坐标,由平行于y轴的直线上两点间的距离公式求解,分两种情况求解即可;
(3)先判断出点N是直线BC和y轴交点,即N(0,18),得出PQ=NP=MN,从而先确定出t的值,求出PQ,即得出MN的长,即可得出M坐标.

解答 解:(1)设直线BC解析式为y=kx+b,
∵点B的坐标为(6,6),点C的坐标为(9,0).
∴$\left\{\begin{array}{l}{6k+b=6}\\{9k+b=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{k=-2}\\{b=18}\end{array}\right.$
∴直线BC解析式为y=-2x+18,
(2)∵AB∥OC,点B的坐标为(6,6),
∴A(0,6),AB=6,
设点P坐标为(t,6),
∴Q(t,-2t+18),
①当0≤t<6时,
d=PQ=yQ-yP=-2t+18-6=-2t+12;
②当t>6时,
d=PQ=yP-yQ=6-(-2t+18)=2t-12;
∴d=$\left\{\begin{array}{l}{-2t+12(0≤t<6)}\\{2t-12(t>6)}\end{array}\right.$,
(3)∵PQ∥y轴,四边形PQMN为菱形,
∴MN∥y轴,
∵点M在y轴上,
∴点N也在y轴上,
∵N在直线BC上,
∴N(0,18),
由(2)知,P(t,6),
∴NP=$\sqrt{{t}^{2}+144}$,
∵四边形PQMN为菱形,
∴PQ=NP=MN,
①当0≤t<6时,
∴-2t+12=$\sqrt{{t}^{2}+144}$,
∴t=0(舍)或t=16(舍)
②当t>6时,
∴2t-12=$\sqrt{{t}^{2}+144}$,
∴t=0(舍)或t=16,
∴MN=PQ=20,
∵N(0,18)
∴M(0,-2).

点评 此题是一次函数综合题,主要考查了待定系数法,平面坐标系中两点间的距离公式,菱形的性质,解本题的关键是在平面坐标系中两点间的距离公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.分解因式:x2(b+c-d)-4x(d-b-c)-4d+4c+4b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算题
(1)$\sqrt{12}$+$\sqrt{48}$-$\sqrt{75}$
(2)2sin30°+$\sqrt{3}$tan60°+2cos245°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.分解因式
(1)a2-9b2
(2)49x2+28x+4
(3)m3-4mn2
(4)4(p+q)2+4(p+q)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.若|a|=-a成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.自学下面材料后,解答问题.
分母中含有未知数的不等式叫分式不等式.如:$\frac{x-2}{x+1}$>0,$\frac{2x+3}{x-1}$<0等.那么如何求出它们的解集呢?
根据有理数除法法则可知:两数相除,同号得正,异号得负.据此可知不等式$\frac{x-2}{x+1}$>0,可变成$\left\{\begin{array}{l}{x-2>0}\\{x+1>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-2<0}\\{x+1<0}\end{array}\right.$,再解这两个不等式组,得x>2或x<-1.
(1)不等式$\frac{2x+3}{x-1}$<0,可变成不等式组$\left\{\begin{array}{l}{2x+3<0}\\{x-1>0}\end{array}\right.$或$\left\{\begin{array}{l}{2x+3>0}\\{x-1<0}\end{array}\right.$;
(2)解分式不等式$\frac{2x-3}{4+x}$<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF

问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=45°,∠POB=30°,OP=4km,试求△MON的面积.
拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、($\frac{9}{2}$,$\frac{9}{2}$)、(4、2),过点P的直线l与四边形OABC一组对边OC、AB相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程组
(1)$\left\{\begin{array}{l}{2x+y=5}\\{x-3y=6}\end{array}\right.$                     
(2)$\left\{\begin{array}{l}{\frac{s}{2}-\frac{t}{3}=5}\\{\frac{s}{4}+\frac{t}{8}=\frac{3}{4}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.将抛物线y=x2+bx+c先向左平移1个单位,再向下平移2个单位,得到抛物线y=x2-2x+1,求b、c的值.

查看答案和解析>>

同步练习册答案