精英家教网 > 初中数学 > 题目详情

【题目】《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出文,则差文;每人出文,则差文.

1)设人数为,则用含的代数式表示羊价为______________________

2)求人数和羊价各是多少?

【答案】1 ;(2)人数人,羊价.

【解析】

1)设合伙人为x人,根据若每人出5文,还差45文;若每人出7文,还差3,即可用含x的代数式表示出羊的总钱数,(2)由(1)中两个代数式都表示羊的总钱数,它们相等解之即可得出结论.

1)设人数为,则用含的代数式表示羊的总价格为()文或()文;

2)解:设人数为

(文)

(文)

答:人数人,羊价.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在梯形纸片ABCD中,ADBCADCD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DEBC于点E,连结CE

1)求证:四边形ECDC′是菱形;

2)若BCCDAD,试判断四边形ABED的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或解方程:

(1)|-2|+-32- (2)2+3-5-3 (3)|-2|+|-1|

(4) (5) (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段OAOB.

1)根据下列语句顺次画图

①延长OAC,使得AC=OA;

②画出线段OB的中点D,连结CD

③在CD上确定点P,使得PA+PB的和最小.

(2)写出③中确定点P的依据_______________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线(m>0)与x轴的交点为AB

1)求抛物线的顶点坐标;

2)横、纵坐标都是整数的点叫做整点.

m1时,求线段AB上整点的个数;

若抛物线在点AB之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的两条对角线ACBD互相垂直, A1B1C1D1, 是四边形ABCD的中点四边形,如果AC=8, BD=10,那么四边形A1B1C1D1,的面积为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标中,边长为1的正方形OABC的两顶点AC分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABCO点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点MBC边交x轴于点N(如图1).

(1)求边AB在旋转过程中所扫过的面积;

(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;

(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是(  )

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

同步练习册答案