【题目】解下列方程
(1)(配方法)
(2)(公式法)
(3)(分解因式法)
【答案】(1),;(2),;(3),;(4),
【解析】
(1)利用配方法得(x﹣1)2=100,然后利用直接开平方法解方程;
(2)先把方程化为一般式,然后利用求根公式法解方程;
(3)先移项得到4x(2x+1)﹣3(2x+1)=0,然后利用因式分解法解方程;
(4)先把方程化为一般式,然后利用因式分解法解方程.
(1)x2﹣2x+1=100,(x﹣1)2=100,x﹣1=±10,所以x1=11,x2=﹣9;
(2)x2+5x﹣7=0,△=52﹣4×1×(﹣7)=53,x=
所以x1=,x2=;
(3)4x(2x+1)﹣3(2x+1)=0,(2x+1)(4x﹣3)=0,2x+1=0或4x﹣3=0,所以x1=﹣,x2=;
(4)x2+2x﹣8=0,(x+4)(x﹣2)=0,x+4=0或x﹣2=0,所以x1=﹣4,x2=2.
科目:初中数学 来源: 题型:
【题目】不透明的袋子中装有个相同的小球,它们除颜色外无其它差别,把它们分别标号:、、、
随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率
随机摸出两个小球,直接写出“两次取出的球标号和等于”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1;
(2)写出点C1的坐标(直接写答案):C1 ;
(3)△A1B1C1的面积为 ;(直接写答案)
(4)在y轴上画出点P,使PB+PC最小.
(直接在图上画并简要叙述画图过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bc+c的图象如图所示,则下列判断中错误的是( )
A. 图象的对称轴是直线x=﹣1 B. 当x>﹣1时,y随x的增大而减小
C. 当﹣3<x<1时,y<0 D. 一元二次方程ax2+bx+c=0的两个根是﹣3,1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△AOP为等边三角形,点A(0,1),B为y轴上一动点,以BP为边作等边△PBC.
(1)当点B运动到(0,4)时,AC= ;
(2)∠CAP的度数为 ;
(3)当点B运动时,AE的长度是否发生变化?若不变,求出AE的值;若变化,说明变化的规律.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,抛物线经过点,且与轴交于,两点,与轴交于点,连接,,.
该抛物线的解析式;
如图,点是所求抛物线上的一个动点,过点作轴的垂线,分别交轴于点,交直线于点,设点的横坐标为,当时,过点作,交轴于点,连接,则为何值时,的面积取得最大值,并求出这个最大.
如图,中,,,,直角边在轴上,且与重合,当沿轴从右向左以每秒个单位长度的速度移动时,设与重叠部分的面积为,求当时,移动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC和等边△ECD的边长相等,BC与CD两边在同一直线上,请根据如下要求,使用无刻度的直尺,通过连线的方式画图.
(1)在图1中画一个直角三角形; (2)在图2中画出∠ACE的平分线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com