精英家教网 > 初中数学 > 题目详情
(2007•衢州)一个水池有2个速度相同的进水口,1个出水口,单开一个进水口每小时可进水1立方米,单开一个出水口每小时可出水2立方米.某天0点到6点,该水池的蓄水量与时间的函数关系如图所示(至少打开一个进水口).给出以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水,(3)4点到6点不进水也不出水.则错误的论断是    .(填序号)
【答案】分析:根据特殊点的实际意义即可求出答案.
解答:解:由图中可以看出:0点到3点进水的速度为每小时2立方米,故是打开了两个进水口而不出水,(1)对;
3点到4点水减少的速度为每小时1立方米,可能是打开一个进水口又打开了一个出水口,(2)错;
4点到6点的水位没变化,可能是打开两个进水口又打开了一个出水口,(3)错.
点评:本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《锐角三角函数》(02)(解析版) 题型:选择题

(2007•衢州)江郎山位我国典型的丹霞地貌景观,被称为“中国丹霞第一奇峰”.九年级(2)班课题学习小组的同学要测量三块巨石中的最左边的“郎峰”的高度,他们在山脚的平地上选取一处观测点C,测得∠BCD=28°,∠ACD=48°25′,已知从观测点C到“郎峰”脚B的垂直高度为322米,如图所示,那么“郎峰”AB的高度约为( )

A.152米
B.361米
C.202米
D.683米

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的旋转》(02)(解析版) 题型:填空题

(2007•衢州)一副三角板按如图所示叠放在一起,若固定△AOB,将△ACD绕着公共顶点A,按顺时针方向旋转α度(0°<α<180°),当△ACD的一边与△AOB的某一边平行时,相应的旋转角α的值是   

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《尺规作图》(01)(解析版) 题型:解答题

(2007•衢州)下面的图是由边长为a的正方形剪去一个边长为b的小正方形后余下的图形.把图剪开后,再拼成一个四边形,可以用来验证公式a2-b2=(a+b)(a-b).
(1)请你通过对图的剪拼,画出三种不同拼法的示意图.要求:
①拼成的图形是四边形;
②在图上画剪切线(用虚线表示);
③在拼出的图形上标出已知的边长.
(2)选择其中一种拼法写出验证上述公式的过程.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《三角形》(12)(解析版) 题型:解答题

(2007•衢州)请阅读下列材料:
问题:如图(1),一圆柱的底面半径、高均为5cm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:
路线1:侧面展开图中的线段AC.如下图(2)所示:
设路线1的长度为l1,则l12=AC2=AB2+2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC.如上图(1)所示:
设路线2的长度为l2,则l22=(AB+BC)2=(5+10)2=225



l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l12>l22,∴l1>l2
所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1cm,高AB为5cm”继续按前面的路线进行计算.请你帮小明完成下面的计算:
路线1:l12=AC2=______;
路线2:l22=(AB+BC)2=______
∵l12______l22
∴l1______l2(填>或<)
∴选择路线______(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短.

查看答案和解析>>

科目:初中数学 来源:2007年浙江省衢州市中考数学试卷(解析版) 题型:填空题

(2007•衢州)一副三角板按如图所示叠放在一起,若固定△AOB,将△ACD绕着公共顶点A,按顺时针方向旋转α度(0°<α<180°),当△ACD的一边与△AOB的某一边平行时,相应的旋转角α的值是   

查看答案和解析>>

同步练习册答案