精英家教网 > 初中数学 > 题目详情
如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.
(1)求点E、F的坐标(用含m的式子表示);
(2)连接OA,若△OAF是等腰三角形,求m的值;
(3)如图(2),设抛物线y=a(x-m-6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.
(1)∵四边形ABCD是矩形,
∴AD=CB=10,AB=DC=8,∠D=∠DCB=∠ABC=90°,
由折叠对称性:AF=AD=10,EF=DE,
在Rt△ABF中,BF=
AF2-AB2
=
100-64
=6,
∴CF=4,
设EF=x,则EC=8-x,
在Rt△ECF中,42+(8-x)2=x2
解得:x=5,
∴CE=3,
∵B(m,0),
∴E(m+10,3),F(m+6,0);

(2)分三种情况讨论:
若AO=AF,
∵AB⊥OF,
∴BO=BF=6,
∴m=6,
若OF=FA,则m+6=10,
解得:m=4,
若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+64,
∴(m+6)2=m2+64,
解得:m=
7
3

∴m=6或4或
7
3


(3)由(1)知:E(m+10,3),A(m,8).
a(m-m-6)2+h=8
a(m+10-m-6)2+h=3

a=
1
4
h=-1

∴M(m+6,-1),
设对称轴交AD于G,
∴G(m+6,8),
∴AG=6,GM=8-(-1)=9,
∵∠OAB+∠BAM=90°,∠BAM+∠MAG=90°,
∴∠OAB=∠MAG,
∵∠ABO=∠MGA=90°,
∴△AOB△AMG,
OB
MG
=
AB
AG

即:
m
9
=
8
6

∴m=12,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

一拱桥,桥下的水面宽AB=20米,拱高4米,若水面上升3米至EF时,水面宽EF应是多少米?
(1)若你将该拱桥当作抛物线,请你在坐标系中画出该拱桥,并用函数的知识来求出EF的长.
(2)若你将拱桥看作圆的一部分,请你用圆的有关知识画图,并解答.
(3)从中你得到什么启示.(用一句话回答.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,过点F(0,1)的直线y=kx+b与抛物线y=
1
4
x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
1
2
x2-2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连接O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.
(1)求直线l的函数解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点Q,使得S△DQC=S△DPB?若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
1
40
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米.(精确到1米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某租凭公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每月需维护费150元,未租出的车每月需维护费50元.
(1)当每辆车的月租金定为3600元时,能租出______辆车(直接填写答案);
(2)设每辆车的月租金为x(x≥3000)元,用含x的代数式填空:
(3)每辆车的月租金定为多少元时,租凭公司的月收益最大,最大月收益是多少元?
为租出的车辆数租出的车辆
所有未租出的车每月的维护费租出的车每辆的月收益

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知抛物线y=
1
4
x2+
3
2
x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=
2
5
DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点A,其顶点为B,另一抛物线y=(x-h)2+2-h(h>1)的顶点为D,两抛物线相交于点C.
(1)求点B的坐标,并说明点D在直线l上的理由;
(2)设交点C的横坐标为m.
①交点C的纵坐标可以表示为:______或______,由此进一步探究m关于h的函数关系式;
②如图2,若∠ACD=90°,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c的图象经过A(2,4),其顶点的横坐标是
1
2
,它的图象与x轴交点为B(x1,0)和(x2,0),且x12+x22=13.求:
(1)此函数的解析式,并画出图象;
(2)在x轴上方的图象上是否存在着D,使S△ABC=2S△DBC?若存在,求出D的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案