精英家教网 > 初中数学 > 题目详情
操作示例:
对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图1中的四边形BNED.
从拼接的过程容易得到结论:
①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
实践与探究:
(1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N;
①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形);
(2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.
(1)①证明:由作图的过程可知四边形MNED是矩形.
在Rt△ADM与Rt△CDE中,
∵AD=CD,又∠ADM+∠MDC=∠CDE+∠MDC=90°,
∴DM=DE
∴四边形MNED是正方形.
∵DE2=CD2+CE2=a2+b2
∴正方形MNED的面积为a2+b2
②过点N作NP⊥BE,垂足为P,如图
可以证明图中6与5位置的两个三角形全等,4与3位置的两个三角形全等,2与1位置的两个三角形也全等.
所以将6放到5的位置,4放到3的位置,2放到1的位置,恰好拼接为正方形MNED.

(2)答:能.
理由是:由上述的拼接过程可以看出:对于任意的两个正方形都可以拼接为一个正方形,而拼接出的这个正方形可以与第三个正方形在拼接为一个正方形,依此类推.由此可知:对于n个任意的正方形,可以通过(n-1)次拼接,得到一个正方形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,则CF=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系.

(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;
(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边(  )
A.AB上B.BC上C.CD上D.DA上

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在边长为4的正方形ABCD中,以点B为圆心,BA为半径作弧
AC
,F为
AC
上的一动点,过点F作⊙B的切线交AD于点P,交DC于点Q.
(1)求证△DPQ的周长等于正方形ABCD的周长的一半;
(2)分别延长PQ、BC,延长线相交于点M,设AP长为x,BM长为y,试求出y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点E是正方形ABCD对角线AC上一点,AF⊥BE于点F,交BD于点G,则下述结论中不成立的是(  )
A.AG=BEB.△ABG≌△BCEC.AE=DGD.∠AGD=∠DAG

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.

(1)求证:AB-OF=
1
2
AC

(2)点A1、点C1分别同时从A、C两点出发,以相同的速度运动相同的时间后同时停止,如图,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E⊥A1C1,垂足为E,请猜想EF1,AB与
1
2
A1C1
三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=6,C1E1=4时,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当点坐标为A(4,0)时,求点D的坐标;
(2)求证:OP平分∠AOB;
(3)直接写出OP长的取值范围(不要证明).

查看答案和解析>>

同步练习册答案